Antifungal Activity of the Monoterpenes Carvacrol, *p*-Cymene, Eugenol, and Iso-Eugenol When Applied to Wood against *Aspergillus flavus*, *Aspergillus niger*, and *Fusarium culmorum*

Mohamed Z. M. Salem , a.* Wael A. A. Abo-Elgat , Maisa M. A. Mansour , c.* and Shady Selim , d

This work was designed to evaluate the bioactivity of four monoterpenes, namely carvacrol, p-cymene, eugenol, and iso-eugenol, applied to wood blocks from *Pinus sylvestris* sapwood using the vapor method against *Aspergillus flavus*, *Aspergillus niger*, and *Fusarium culmorum*. These monoterpenes were prepared at 20, 40, 60, 80, and 100 μ L/mL. The highest fungal inhibition percentage (FIP, 24.4%) against the growth of *A. flavus* was observed for p-cymene when applied to a wood sample at 100 μ L/mL. The highest FIPs observed against the growth of *A. niger* were 21.5% and 16.3%, by p-cymene and iso-eugenol, respectively, at 100 μ L/mL. The highest FIPs observed against the growth of *F. culmorum* were 41.5 and 27.0% by the application of carvacrol at 100 μ L/mL and 80 μ L/mL, respectively. This study showed the importance of monoterpenes for antifungal activity and may contribute to the most rational use of these compounds as antimicrobial agents for wood protection.

DOI: 10.15376/biores.20.1.393-412

Keywords: Antimicrobial activity; Carvacrol; p-Cymene; Eugenol; Iso-eugenol; Pinus sylvestris sapwood

Contact information: a: Forestry and Wood Technology Department, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt; b: Restoration Department, High Institute of Tourism, Hotel Management and Restoration, Abu Qir, Alexandria, Egypt; c: Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza 12613, Egypt; d: Department of Pesticide Chemistry and Technology, Faculty of Desert and Environmental Agriculture, Matrouh University; *Corresponding authors: zidan_forest@yahoo.com; maisamansour@cu.edu.eg

INTRODUCTION

Wood is a naturally occurring, renewable, extremely adaptable, and high-performing material that has been widely utilized by humans from their beginning. Additionally, it holds the greatest amount of carbon trapped in terrestrial ecosystems. However, because of its structure and chemical components, wood is vulnerable to biodeterioration, with fungi being the primary degraders (Goodell *et al.* 2008; Brischke and Alfredsen 2020; Afifi *et al.* 2023). Mold stains can cause damage to wood and other organic materials; their activity results in the discoloring of wood, which detracts from its aesthetic value even if they are not seriously damaging structural integrity (Allsopp *et al.* 2004; Kim *et al.* 2020; Eldeeb *et al.* 2022; Taha *et al.* 2021; Mansour *et al.* 2023). Certain environmental factors, such as moisture content above 20%, oxygen availability, and temperature between 15 and 45 °C, make wood vulnerable to fungal infestation. The primary target of fungal decay is outdoor wooden structures. The infestation can greatly

reduce the mechanical and aesthetic qualities of the wood and shorten its service life (Zabel and Morrell 2012; Meyer and Brischke 2015).

Secondary metabolites of plants called monoterpenes are commonly utilized in industrial processes as starting points for significant fragrance compounds including (-)menthol and vanillin. Nevertheless, monoterpenes' physicochemical characteristics make it challenging to convert them conventionally into scents with additional value (Soares-Castro et al. 2020). Because of their low boiling temperatures, monoterpenes are the primary components of most plant essential oils and are responsible for the distinctive odorous qualities of plants. For example, geranyl pyrophosphate, the common acyclic C10 intermediate of the isoprenoid route, is the starting point for their biosynthesis (Rehman et al. 2016; Gershenzon and Croteau 2018). Monoterpene hydrocarbons and oxygenated monoterpenes are the two main categories of monoterpenes. Alcohols, aldehydes, ketones, ethers, and acids are included in the latter category (Zuzarte and Salgueiro 2015; Soares-Castro et al. 2020; Yingngam 2022). Certain monoterpenes have inherent pesticidal qualities that make them suitable starting compounds for the development of safe, efficient, and completely biodegradable insecticides as well as possible substitutes for pesticides (Khursheed et al. 2022; Gupta et al. 2023). Numerous fungicidal actions of monoterpenes (Wuryatmo et al. 2003; Cárdenas-Ortega et al. 2005), and other characteristics, are possessed.

In common practice, the durability issue with wood has been addressed by preservative treatments such as creosote, pentachlorophenol, and inorganic arsenic (Cheng *et al.* 2008). However, when these preservatives are utilized over time, they cause serious issues with pollution to the environment and human health. Thus, it becomes increasingly important to look for bioactive chemical compounds from plants that are natural, safe, and do not pollute as a substitute for synthetic preservatives (Loh *et al.* 2011; Hu *et al.* 2015).

During the authors' continuous search for potential antifungal substances, four monoterpenes, namely carvacrol, p-cymene, eugenol, and iso-eugenol were applied to wood samples and evaluated for their antifungal activity against three plant pathogenic fungi Aspergillus flavus, Aspergillus niger, and Fusarium culmorum. Monoterpenes, including geraniol, myrcene and thymol were observed to have promising antifungal activity against four plant pathogenic fungi Asperigallus niger, Rhizoctonia solani, Fusarium oxysporum, and Penecillium digitatum (Marei et al. 2012). Among 20 compounds, the antifungal tests revealed that cuminaldehyde, β-citronellol, nerol, geraniol, citral, and α -terpineol exhibited strong antifungal effects against *Botryosphaeria dothidea* (Zhang et al. 2018). Carvacrol was found to be the most potent of the 41 pure monoterpenes against the wood white-rot fungi Trametes hirsuta, Schizphylhls commune, and Pycnoporus sanguineus. This means that carvacrol may be used as a natural fungicidal agent in the treatment of wood preservation (Zhang et al. 2016). Strong antifungal activity was demonstrated by cinnamaldehyde, α -methyl cinnamaldehyde, (E)-2-methylcinnamic acid, eugenol, and isoeugenol against the brown-rot fungus Laetiporus sulphureus and the white-rot fungus Lenzites betulina (Cheng et al. 2008). Additionally, it was discovered that natural compounds have fungicidal properties against the fungi that cause wood decay. Of these natural compounds, the most potent antifungal ones were eugenol, α -cadinol, τ muurolol, τ -cadinol, γ -cadinene, cryptomeridiol, chamaecynone, cinnamaldehyde, and ferruginol (Wang et al. 2005 a,b; Cheng et al. 2006; Yen and Chang 2008).

Thus, this study aimed to find a botanical-based compound with potential antifungal activity against wood-decay pathogenic fungus. To reach this goal, the study investigated the fungicidal activity of four monoterpenes, carvacrol, *p*-cymene, eugenol, and iso-eugenol when applied to wood samples against three pathogenic fungi and compared the antifungal activity potential of these four monoterpenes against each pathogenic type of fungi.

EXPERIMENTAL

Materials

Monoterpenes

Four monoterpenes (Fig. 1), carvacrol, p-cymene, eugenol, and iso-eugenol, were obtained from Sigma-Aldrich (Merck). The monoterpenes were prepared at concentrations of 20, 40, 60, 80, and 100 μ L/mL. The respective amount of monoterpene was diluted in 10% dimethyl sulfoxide (10% DMSO and 90% sterile distilled water), and 0.5 mL of Tween 80 (polysorbate-80) as emulsifier was added (Salem et~al.~2016; Mohareb et~al.~2023).

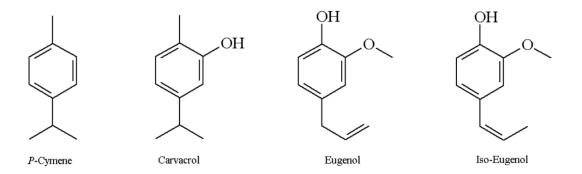


Fig. 1. Chemical structures of the monoterpenes

Fungi

The antifungal bioassays of the four monoterpenes, carvacrol, *p*-cymene, eugenol and iso-eugenol were conducted using three molds (*Aspergillus flavus* AFl375, *Aspergillus niger* Ani245, and *Fusarium culmorum* Fcu761) and accession numbers in Gen Bank, MH355958, MH355955, and MH355957, respectively (Abo Elgat *et al.* 2020; Elshaer *et al.* 2024).

Methods

Vapor treatment of wood with the monoterpenes for fungi inhibition

Pinus sylvestris wood, which is widely used in Egyptian woodworking, was selected for the work as an expensive imported wood. Therefore, the staining mold fungi can grow over the wood when the appropriate conditions—namely, relative humidity, moisture content, and temperature—are met. Wood blocks from *P. sylvestris* sapwood (Mohareb *et al.* 2023) in the dimension of $0.5 \times 2 \times 2$ cm were vapor-treated with each of the prepared monoterpenes at the previous concentrations using the evaporation method

(López *et al.* 2005; Nedorostova *et al.* 2009). Wood samples were put in Petri dishes that contained 8 layers of Wattman No. 1 filter paper overlaid by a mesh (polyethylene spacer). The dishes were autoclaved at 121 °C for 20 min and left to cool, then each monoterpene compound with the respective concentration was impregnated over the filter papers (three Petri dishes for every monoterpene and concentration) and kept for 48 h to allow the monoterpene evaporation, which was subsequently absorbed by the wood samples.

In vitro antifungal activity of treated wood with monoterpenes

The antifungal activity of wood treated with four monoterpenes samples against the growth of *A. flavus*, *A. niger*, and *F. culmorum* was achieved (Taha *et al.* 2019; Elshaer *et al.* 2024). A 15-day-old PDA culture of each fungus was prepared. Three wood samples were used for each concentration. Following the application of each monoterpene compound to wood samples, a Petri dish containing PDA culture was inoculated with a disc (5-mm diameter) of each fungus, and the samples were then incubated for a week at 25 ± 1 °C. As an alternative, 10% DMSO and SDW (1:1 v/v) were combined in the control sample, while fluconazole (0.31%) was used as a positive control. The inhibition zones (IZs, mm) of the monoterpenes around the treated woods against each fungus were measured and recorded (Ali *et al.* 2021).

The mycelial growth inhibition percentage was measured with the following formula (Correa-Pacheco *et al.* 2017; Shakam *et al.* 2022): $MGI = [(A_c - A_t) / A_c] \times 100$; where MGI is mycelial growth inhibition and A_c and A_t are average diameters of the fungal colony of the control and treatment, respectively.

After two weeks of inoculation, the visual observation of the fungal growth extent was visually evaluated by the naked eye in accordance with the GOST 9.048–75 (1975) standard, which ranged from 0 (mycelium growth more intense than control) to 5 (no growth).

Statistical analysis

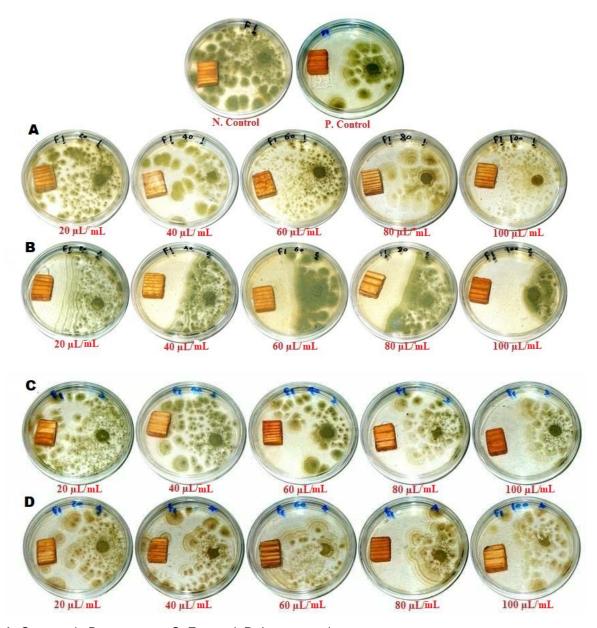
The analysis of variance (ANOVA) tool in SAS version 8.2 was used to statistically examine data from the application of monoterpenes on wood samples against the growth of each fungus. Duncan's Multiple Range Test at Alpha 0.05 was used to measure the differences among the means. The IC₅₀ (half-maximal inhibitory concentration) value is a measure of the concentration of a compound required to inhibit each fungal growth by 50%. These IC₅₀ values were determined using Probit analysis (Finney 1952).

RESULTS AND DISCUSSION

Visual Observation, Inhibition Zones, and the Fungal Growth on Wood-Treated Monoterpenes

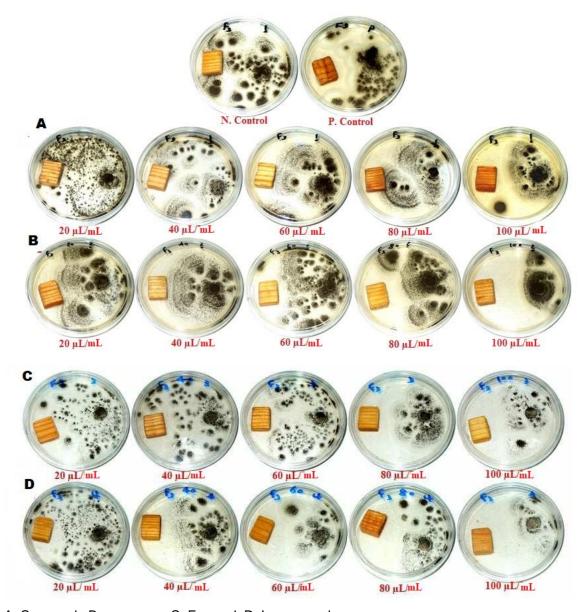
Fungicidal activity was estimated by fungal growth retardation using the visual observation-determined marks (Table 1) and the antifungal bioassay (Figs. 2, 3, and 4). The highest number (4) in Table 1 shows a very marked retardation (colony < 25% of controls) of fungi, especially carvacrol at 100 μ L/mL with *F. culmorum*, *p*-cymene at 100 μ L/mL with *A. flavus* and *F. culmorum*, and eugenol and iso-eugenol at 100 μ L/mL with *F. culmorum*.

		Fungal Growth Retardation Marks*			
Treatments	Concentration	A. flavus	A. niger	F. culmorum	
	20 μL/mL	1	0	2	
	40 µL/mL	2	1	2	
Carvacrol	60 μL/mL	2	2	2	
	80 μL/mL	2	2	3	
	100 μL/mL	3	3	4	
	20 μL/mL	2	1	1	
	40 μL/mL	2	1	2	
<i>p</i> -Cymene	60 μL/mL	2	2	2	
	80 μL/mL	2	2	2	
	100 μL/mL	4	3	4	
	20 μL/mL	1	1	1	
	40 μL/mL	1	1	1	
Eugenol	60 μL/mL	2	2	2	
	80 μL/mL	2	2	2	
	100 μL/mL	3	3	4	
Iso-eugenol	20 μL/mL	1	1	2	
	40 μL/mL	2	2	2	
	60 μL/mL	2	2	2	
	80 μL/mL	3	2	3	
	100 μL/mL	3	3	4	


Table 1. Marks of Fungal Growth Retardation

As shown in Fig. 2 and Table 2, there was enormous or massive growth of *Aspergillus flavus* on an untreated wood sample, but this growth decreased when the wood samples were treated with the standard fungicide (fluconazole, 0.31%). The highest inhibition zone (IZ) values were 22.00, 19.00, and 17.00 cm by *p*-cymene, eugenol, and iso-eugenol at $100 \,\mu\text{L/mL}$, respectively, as well as *p*-cymene at $80 \,\mu\text{L/mL}$ with an IZ value of 17.3 mm, compared to fluconazole (17.7 mm).

Figure 3 and Table 2 present the antifungal activity of monoterpene-treated wood against the growth of *A. niger*. The highest IZ values were 19.3 and 14.7 mm as wood samples treated with *p*-cymene and iso-eugenol, respectively, at 100 μ L/mL. Additionally, at 80 μ L/mL, the treated wood samples showed IZ values of 10.3 and 10.7 mm by *p*-cymene and iso-eugenol, respectively, compared to fluconazole (7.3 mm).


Figure 4 and Table 2 present the antifungal activity of monoterpene-treated wood against the growth of *Fusarium culmorum*. The highest IZs were recorded by the application of carvacrol at 100 and 80 μ L/mL with values of 37.3 and 24.3 mm, respectively. These were followed by eugenol, *p*-cymene, and iso-eugenol with values of 21.3, 20.7, and 20.3 mm, respectively, and iso-eugenol at 80 μ L/mL with IZ 19.3 mm, compared to fluconazole (17.3 mm).

^{*} Values are measured according to: (GOST-9.048-89 1975; Humar and Pohleven 2005; Krivushina *et al.* 2022). 0: growth more intense than control, 1: normal growth, insignificant retardation (area of colony \geq 90% of area of controls); 2: visible signs of retardation (colony < 90% and \geq 60% of controls); 3: pronounced retardation (colony < 60% and \geq 25% of controls); 4: very marked retardation (colony < 25% of controls); 5: no growth

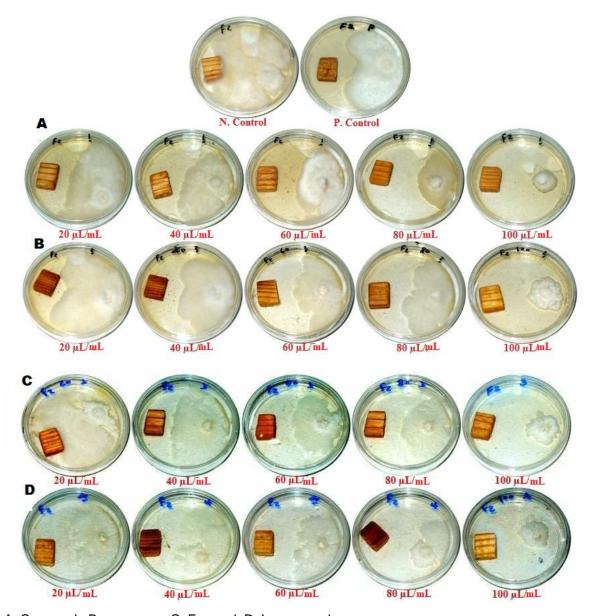

A: Carvacrol; B: p-cymene; C: Eugenol; D: Iso-eugenol

Fig. 2. Antifungal activity of monoterpenes-treated wood against the growth of Aspergillus flavus

A: Carvacrol; B: p-cymene; C: Eugenol; D: Iso-eugenol

Fig. 3. Antifungal activity of monoterpenes-treated wood against the growth of Aspergillus niger

A: Carvacrol; B: p-cymene; C: Eugenol; D: Iso-eugenol

Fig. 4. Antifungal activity of monoterpenes-treated wood against the growth of Fusarium culmorum

Table 2. Fungal Inhibition Zones and Growth After 14 Days Following the Application of Carvacrol, *p*-cymene, Eugenol, and Iso-eugenol on Wood Samples

	Con-	Aspergillus flavus		Aspergillus niger		Fusarium culmorum	
Compound	centration	IZ-14 days	Growth-14	IZ-14 days	Growth-	IZ-14 days	Growth-
-		(mm)	days		14 days	,	14 days
DMSO	10%	0.00	12.33 ±	0.00i	10.66 ±	0.000	12.33 ±
			2.51a		1.15a		3.21a
Fluconazole	0.31%	17.66 ±	0.00d	7.33 ±	0.00e	17.33 ± 2.51f	0.00b
		2.08bc		1.15d			
Carvacrol	20 μL/mL	0.00g	10.00 ±	0.00i	4.33 ±	9.33 ± 0.57kl	0.00b
	'	3	1.00b		0.57b		
	40 μL/mL	2.33 ±	0.00d	0.00i	2.33 ±	11.66 ± 1.52ij	0.00b
	'	0.57g			0.57c	 	
	60 µL/mL	4.66 ± 0.57f	0.00d	0.00i	1.33 ±	18.66 ±	0.00b
					0.57d	1.15ef	
	80 µL/mL	6.33 ± 0.57f	0.00d	0.00i	0.66 ±	24.33 ±	0.00b
	00 µ=/=	0.00 = 0.0	0.000	0.00.	0.57e	0.57b	0.000
	100	9.66 ±	0.00d	5.66 ±	0.00e	37.33 ±	0.00b
	μL/mL	0.57e	0.000	0.57ef	0.000	2.08a	0.000
<i>p</i> -Cymene	20 μL/mL	10.33 ±	0.00d	0.00i	2.66 ±	7.66 ± 0.571	0.00b
ρ σyσισ	20 μ2/2	0.57e	0.000	0.00.	0.57c	7100 = 0.011	0.000
	40 μL/mL	12.66 ±	0.00d	0.00i	1.66 ±	10.33 ±	0.00b
	+0 μΕ/ΠΕ	1.15d	0.000	0.001	0.57d	0.57jk	0.005
	60 μL/mL	16.33 ±	0.00d	5.33 ±	0.00e	12.66 ±	0.00b
	00 μΕ/ΙΠΕ	0.57c	0.000	0.57ef	0.000	1.15hi	0.005
	80 μL/mL	17.33 ±	0.00d	10.33 ±	0.00e	15.33 ±	0.00b
	00 μΕ/ΙΙΙΕ	1.15bc	0.000	0.57c	0.000	0.57g	0.005
	100	22.00 ±	0.00d	19.33 ±	0.00e	20.66 ±	0.00b
	μL/mL	2.00 ±	0.000	1.15a	0.006	1.15cd	0.005
Eugenol	20 μL/mL	0.00g	1.66 ±	$0.66 \pm 0.57i$	0.00e	0.000	1.33 ±
Lugerioi	20 μΕ/ΙΙΙΕ	0.009	0.57c	0.00 ± 0.571	0.000	0.000	0.57b
	40 μL/mL	0.00g	1.00 ±	2.33 ±	0.00e	4.33 ± 0.57m	0.00b
	40 μΕ/ΙΠΕ	0.009	1.00 <u>1</u>	0.57h	0.006	4.55 ± 0.57111	0.005
	60 μL/mL	5.50 ±	0.00d	4.50 ±	0.00e	9.50 ±	0.00b
	OO μΕ/IIIE	0.707f	0.000	0.707fg	0.006	0.707kl	0.000
	80 μL/mL	8.75 ±	0.00d	6.00 ±	0.00e	11.75 ± 1.25ij	0.00b
	ου με/πε	3.94e	0.000	1.41e	0.00e	11.75 ± 1.251j	0.000
	100	19.00 ±	0.00d	10.33 ±	0.00e	21.33 ±	0.00b
			0.000	0.57c	0.00e	1.15c	0.000
laa ayaaaal	µL/mL	1.00b	4.00 .		0.000		0.006
Iso-eugenol	20 μL/mL	0.00g	1.00 ±	1.33 ±	0.00e	2.33 ± 0.57n	0.00b
	40 /201	0.00~	0.00cd	0.57hi	0.000	40.CC :	0.006
	40 μL/mL	0.00g	0.66 ±	3.66 ±	0.00e	10.66 ±	0.00b
	CO /!	0.00=	0.57cd	0.57g	0.00-	0.57jk	0.005
	60 μL/mL	0.00g	0.00d	6.33 ±	0.00e	14.33 ±	0.00b
	00 1 / 1	45.00	0.00.1	0.57de	0.00	0.57gh	0.001
	80 µL/mL	15.33 ±	0.00d	10.66 ±	0.00e	19.33 ±	0.00b
	460	0.57c	0.00.	1.15c	0.00	0.57de	0.001
	100	17.00 ±	0.00d	14.66 ±	0.00e	20.33 ±	0.00b
	μL/mL	1.00bc	<u> </u>	0.57b		0.577cde	

Means with the same letter are not significantly different according to Duncan's Multiple Range Test at 0.05 level of probability.

The Fungal Inhibition Percentages and the IC₅₀

The fungal inhibition percentage (FIP%) is shown in Table 3. Compared to fluconazole (FIP 19.6%), p-cymene, when applied to a wood sample at 100 μ L/mL, achieved the highest FIP (24.4%) against the growth of *Aspergillus flavus*, followed by eugenol at 100 μ L/mL (21.1%) and p-cymene at 80 μ L/mL (19.2%). Additionally, isoeugenol at 100 μ L/mL and 80 μ L/mL resulted in FIP values of 18.9% and 17.0%, respectively, and p-cymene at 60 μ L/mL gave an IZ value of 18.1%. The lowest IC50 values of 183 and 386 μ L/mL were achieved by the application of eugenol and p-cymene, respectively, on wood (Table 4).

The highest FIPs observed against the growth of *Aspergillus niger* were 21.5% and 16.3%, by *p*-cymene and iso-eugenol, respectively, at 100 μ L/mL, followed by iso-eugenol at 80 μ L/mL (11.8%) and *p*-cymene at 60 μ L/mL (18.1%), as shown in Table 3. The lowest IC₅₀ values of 172 μ L/mL and 202 μ L/mL, were observed by the application of *p*-cymene and iso-eugenol, respectively, on wood (Table 5).

The highest FIPs observed against the growth of *Fusarium culmorum* were 41.5% and 27.0% by the application of carvacrol at 100 μ L/mL and 80 μ L/mL, respectively (Table 3), followed by eugenol at 100 μ L/mL (23.7%). The lowest IC50 values of 129 7 and 155 μ L/mL were reached by the application of carvacrol and iso-eugenol, respectively, on wood (Table 6).

Table 3. Antifungal Activity of Carvacrol, *p*-cymene, Eugenol, and Iso-eugenol Against *Aspergillus flavus*, *Aspergillus niger*, and *Fusarium culmorum*

Compound	Concentration	Fungal Inhibition Percentage (%)				
		Aspergillus flavus	Aspergillus niger	Fusarium culmorum		
DMSO	10%	0.00g	0.00i	0.000		
Fluconazole	0.31%	19.62 ± 2.31bc	8.14 ± 1.28d	19.25 ± 2.79f		
Carvacrol	20 μL/mL	0.00	0.00i	10.37 ± 0.64kl		
	40 μL/mL	$2.59 \pm 0.64g$	0.00i	12.96 ± 1.69ij		
	60 μL/mL	$5.18 \pm 0.64f$	0.00i	20.74 ± 1.28ef		
	80 μL/mL	$7.04 \pm 0.64 f$	0.00i	$27.04 \pm 0.64b$		
	100 μL/mL	10.74 ± 0.64e	6.29 ± 0.64ef	41.48 ± 2.31a		
<i>p</i> -Cymene	20 μL/mL	11.48 ± 0.64e	0.00i	8.52 ± 0.64l		
	40 μL/mL	14.07 ± 1.28d	0.00i	11.48 ± 0.64jk		
	60 μL/mL	18.14 ± 0.64c	5.92 ± 0.64ef	14.07 ± 1.28hi		
	80 μL/mL	19.25 ± 1.28bc	11.48 ± 0.64c	17.037 ± 0.64g		
	100 μL/mL	24.44 ± 2.22a	21.48 ± 1.28a	22.96 ± 1.28cd		
Eugenol	20 μL/mL	0.00g	0.74 ± 0.64i	0.000		
	40 μL/mL	0.00g	$2.59 \pm 0.64h$	4.81 ± 0.64m		
	60 μL/mL	6.11 ± 0.78f	$5.00 \pm 0.78 fg$	10.55 ± 0.78kl		
	80 μL/mL	9.72 ± 4.38e	6.66 ± 1.57e	13.05 ± 1.39ij		
	100 μL/mL	21.11 ± 1.11b	11.48 ± 0.64c	23.71 ± 1.28c		
Iso-eugenol	20 μL/mL	0.00g	1.48 ± 0.64hi	2.59 ± 0.64n		
	40 μL/mL	0.00g	$4.07 \pm 0.64g$	11.85 ± 0.64jk		
	60 μL/mL	0.00g	7.03 ± 0.64 de	15.92 ± 0.64gh		
	80 μL/mL	17.04 ± 0.64c	11.85 ± 1.28c	21.48 ± 0.64de		
	100 μL/mL	18.88 ± 1.11bc	16.29 ± 0.64b	22.59 ± 0.64cde		

Means with the same letter are not significantly different according to Duncan's Multiple Range Test at 0.05 level of probability

Tested	IC ₅₀ (µL/mL) ^a	Slope ± SE	Chi-test	95% CI		R ²
compound			(χ2) Sig	Lower limit	Upper limit	
Carvacrol	541.581	1.721 ±	0.109	242.031	1211.871	0.965
		0.178				
<i>p</i> -Cymene	385.702	1.199 ±	0.903	169.935	875.427	0.951
		0.182				
Eugenol	183.011	3.285 ± 0.088	0.159	123.142	271.986	0.933
Iso-eugenol	1648.239	0.725 ±	-	415.611	6536.615	1.000
		0.305				

Table 4. The IC₅₀ Values Against the Growth of Aspergillus flavus

Table 5. The IC₅₀ Values Against the Growth of Aspergillus niger

Tested	IC ₅₀ (µL/mL) ^a	Slope ±	Chi-test	95% CI		R ²
compound		SE	(χ2) Sig	Lower limit	Upper limit	
Carvacrol	-	-	-	-	-	-
<i>p</i> -Cymene	172.497	3.450 ± 0.083	0.220	118.757	250.555	0.988
Eugenol	246.112	2.988 ± 0.110	0.649	149.507	405.139	0.947
Iso-eugenol	202.371	2.998 ± 0.096	0.785	131.037	312.538	0.974

a: IC₅₀: Data expressed as µL/mL. Lower IC₅₀ values indicate the highest antifungal activity.

Table 6. The IC₅₀ Values Against the Growth of *Fusarium culmorum*

Tested	IC ₅₀ (µL/mL) ^a	Slope ± SE	Chi-test	95% CI		R ²
Compound			(χ2) Sig	Lower limit	Upper limit	
Carvacrol	128.836	2.504 ±	0.848	87.411	189.895	0.978
		0.086				
<i>p</i> -Cymene	316.074	1.523 ±	0.957	159.369	626.865	0.986
		0.152				
Eugenol	214.313	2.346 ±	0.030	131.321	349.754	0.871
		0.109				
Iso-eugenol	155.272	3.029 ±	0.151	107.142	225.023	0.865
		0.082				

a: IC50: Data expressed as µL/mL. Lower IC50 values indicate the highest antifungal activity.

From the above results, the order of the bioactivity of monoterpenes against the growth of *Aspergillus flavus* was eugenol > p-cymene > carvacrol > Iso-eugenol; for the growth of *Aspergillus niger*, it was p-cymene > iso-eugenol > eugenol > carvacrol; and for *Fusarium culmorum*, it was carvacrol > iso-eugenol > eugenol > p-cymene.

Terpenoids, such as thymol and carvacrol are frequently present in the EO and play a significant role in its biological activity (Igoe *et al.* 1999; Hyldgaard *et al.* 2012). Excellent antimicrobial and anti-biofilm properties are exhibited by carvacrol, an intriguing bioactive substance that is active against a variety of Gram-positive and Gramnegative bacteria, fungi, and both planktonic and sessile human pathogens (Marchese *et al.* 2018).

Thymol, α-pinene, camphene, carvacrol, caryophyllene, myrcene, and α-terpineol—the principal constituents of *Thymus vulgaris* EO—were found to have strong antifungal activity against *Fusarium solani* (Abd-Ellatif *et al.* 2022). Carvacrol and thymol

a: IC_{50} : Data expressed as $\mu L/mL$. Lower IC_{50} values indicate the highest antifungal activity.

are effective against foodborne microorganisms, including *Staphylococcus aureus* and *Salmonella* spp. (Arnal-Schnebelen *et al.* 2004; Casarin *et al.* 2016).

Carvacrol has been linked to antimicrobial properties due to its significant impact on the cytoplasmic membrane's structural and functional characteristics (Nostro and Papalia 2012). In comparison to carvacrol, the most hydrophobic compound, eugenol and menthol demonstrated less antimicrobial activity against the growth of various microorganisms, such as *Escherichia coli*, *Pseudomonas fluorescens*, *Staphylococcus aureus*, *Lactobacillus plantarum*, *Bacillus subtilis*, *Saccharomyces cerevisiae*, and one type of fungus, *Botrytis cinerea* (Ben Arfa *et al.* 2006).

It is worth mentioning that carvacrol could be included in various formulations for use in biomedical and food packaging applications, either by itself or in combination with one or more synergistic products (Nostro and Papalia 2012). The antifungal and antibiofilm properties of carvacrol and thymol are present (Memar *et al.* 2017). Because carvacrol has a free hydroxyl group, is hydrophobic, and has a phenol moiety, it has greater antimicrobial properties than other volatile chemicals found in EOs (Sharifi-Rad *et al.* 2018). The amount of carvacrol that prevented the growth of the foodborne pathogen *Bacillus cereus* on rice was dependent on the initial inoculum size, and concentrations of 0.15 mg/g and higher were found to be effective (Ultee *et al.* 2000). A synergistic interaction between the two chemicals was identified when carvacrol and cymene, another naturally occurring antimicrobial agent, were mixed (Miladi *et al.* 2017). This combination enhanced the antimicrobial capacity of carvacrol (Ultee *et al.* 2000).

These monoterpenes are found in several EOs from aromatic and medicinal plants, including ornamental plants, shrubs, and trees. The primary components of *Corymbia citriodora* leaves' EO were compounds citronellal, citronellol, and isopulegol. When applied to *Melia azedarach* wood, these compounds showed potential antifungal action against *Fusarium culmorum*, *Rhizoctonia solani*, and *Penicillium chrysogenum* (Behiry *et al.* 2020). *Mentha longifolia* EO containing carvacrol, 1,8-cineole, thymol, carvacryl acetate, and *p*-cymene (Patonay *et al.* 2021). Carvacrol, cinnamaldehyde, and geraniol are three antimicrobial substances that are thought to act quickly (Guimarães *et al.* 2019). The EOs of several plants, including wild bergamot (*Citrus aurantium bergamia*), pepperwort (*Lepidium flavum*), thyme (*Thymus vulgaris*), and oregano (*Origanum vulgare*), contain carvacrol (Sharifi-Rad *et al.* 2018).

The main component of clove and cinnamon leaves and buds is eugenol, a monoterpenoid that is categorized as a phenolic chemical and has the IUPAC designation 4-allyl-2-methoxy phenol (Cabral *et al.* 2013). Eugenol has an inhibiting impact on fungi. For example, Zhao *et al.* (2021) have shown that eugenol can significantly reduce the permeability of *Rhizoctonia solani*'s cell membrane by blocking the formation of ergosterol. This could prevent rice sheath blight. Additionally, it caused damage to the cellular membrane of *Botrytis cinerea*, which prevented it from growing (Olea *et al.* 2019).

In comparison to the other components in cinnamon oil, eugenol and cinnamaldehyde were found to have a greater impact on the growth of both brown and white rot fungi (wood decay fungi) (Chittenden and Singh 2011). These compounds were also found to be potential wood preservatives for the treatment of timber (Wang *et al.* 2005a; Geweely *et al.* 2024). Furthermore, it was discovered that the main component in Piper betle, eugenol, had greater potency as an inhibitor of fungal growth than the entire essential oil (Prakash *et al.* 2010). Eugenol was found to significantly suppress the growth of *Aspergillus* sp. and *Cladosporium* sp. (Abbaszadeh *et al.* 2014).

Zhang et al. (2016) documented the antifungal efficacy of pure monoterpenes, including but not limited to β -citronellol, carvacrol, citral, eugenol, geraniol, and thymol, against the fungal species *Trametes hirsuta*, *Schizophyllum commune*, and *Pycnoporus sanguineus*, which cause wood white-rot. The antifungal properties of essential oils from *Origanum vulgare*, *Cymbopogon citratus*, *Thymus vulgaris*, *Pelargonium graveolens*, *Cinnamomum zeylanicum*, and *Eugenia caryophyllata* were confirmed by Xie et al. (2017) against the wood-decaying fungi *T. hirsuta* and *Laetiporus sulphurous*. The most active compounds identified were carvacrol, citron, citronellol, cinnamaldehyde, eugenol, and thymol. It has been demonstrated that several common constituents of natural essential oils, including as eugenol, isoeugenol, (E)-2-methylcinnamic acid, α -methyl cinnamaldehyde, and cinnamaldehyde, efficiently prevent the growth of *L. sulphurous*, a brown-rot fungus, and *Lenzites betulina*, a white-rot fungus (Cheng et al. 2024). Wang et al. (2024), confirmed that the combination of eugenol and citral (CEC) has a substantial synergistic inhibitory impact on *Aspergillus niger*.

According to the findings of Reinprecht *et al.* (2019), out of five differing essential oils (basil, cinnamon, clove, oregano, and thyme), basil oil (which contains manly linalool) exhibited the strongest antifungal activity against the brown-rot fungus *Serpula lacrymans* and the white-rot fungus T. versicolor, while clove oil (which primarily contains eugenol) showed the lowest antifungal activity.

The EO from *Cupressus macrocarpa* leaves showed the presence of sabinene, 4-terpinenol, citronellal, *p*-cymene, spathulenol, *γ*-terpinene, camphor, and limonene as main compounds. This EO showed the highest FIP (65.7% and 35.7%) against the growth of *F. solani* when applied to *P. sylvestris* sapwood at 50 and 25 mg/L, respectively (Mohareb *et al.* 2023). *Pinus roxburghii* Sarg. wood treated with 125 μL/mL of *Mentha longifolia* demonstrated inhibitory zone values of 21.3 mm against *A. niger* and 7.3 mm against *A. flavus*, respectively. Menthone and eucalyptol were identified by this EO as the main chemicals. Furthermore, the application of EOs from *M. longifolia* and *Citrus reticulata* at 500 μL/mL inhibited the growth of *F. culmorum* (100% FIP) (Ali *et al.* 2021). After being dipped in the EO made from *Origanum majorana* leaves, wood samples from *Acacia saligna*, *F. sylvatica*, *Juglans nigra*, and *P. rigida* showed strong antifungal effects against *A. niger* and *Trichoderma harzianum* without altering the wood's structural integrity (Salem *et al.* 2019).

The mechanism of action of monoterpenes has been shown in specific investigations to cause the breakdown of cytoplasmic and organelle membranes. Changes in membrane function based on a lack of membrane integrity may result in antifungal activity (Sikkema *et al.* 1995; Pinto *et al.* 2006; Park *et al.* 2009). The hyphae of *Trichophyton mentagrophytes* were distorted and collapsed at 0.2, 0.4 and 1 mg/mL of eugenol, nerolidol and α-terpineol, respectively (Park *et al.* 2009). Eugenol was found to play a greater role than citral in altering cell membrane morphology of fungi (Wang *et al.* 2024). The *Zygosaccharomyces rouxii* surface morphological folding or deformation is caused by both eugenol and citral, according to a previous observation. According to Cai *et al.* (2019), the eugenol group exhibited a higher degree of cell wrinkling in comparison to the citral group.

CONCLUSIONS

- 1. Four monoterpenes, namely carvacrol, *p*-cymene, eugenol, and iso-eugenol, were used as antifungal agents when applied to wood against *Aspergillus flavus*, *Aspergillus niger*, and *Fusarium culmorum*.
- 2. Carvacrol at $100 \,\mu\text{L/mL}$ with *F. culmorum*, *p*-cymene at $100 \,\mu\text{L/mL}$ with *A. flavus* and *F. culmorum*, and eugenol and iso-eugenol at $100 \,\mu\text{L/mL}$ with *F. culmorum*.
- 3. The lowest IC₅₀ values (the concentration of a compound required to inhibit the fungal growth by 50%) of 183 and 386 μ L/mL against the growth of *A. flavus* were observed by the application of eugenol and *p*-cymene, respectively, on wood.
- 4. When p-cymene and iso-eugenol were applied to wood, the lowest IC₅₀ values of 172 and 202 μ L/mL, respectively, were noted against the development of A. niger.
- 5. The lowest IC₅₀ values of 129 and 155 μ L/mL were observed against the growth of *F. culmorum* by the application of carvacrol and iso-eugenol, respectively, on wood.

ACKNOWLEDGMENTS

The authors are grateful for the cooperation among Forestry and Wood Technology Department, Faculty of Agriculture, Alexandria University, Egypt; Restoration Department, High Institute of Tourism, Hotel Management and Restoration, Abu Qir, Alexandria, Egypt; Department of Conservation and Restoration, Faculty of Archaeology, Cairo University, Giza, Egypt; and Department of Pesticide Chemistry and Technology, Faculty of Desert and Environmental Agriculture, Matrouh University.

REFERENCES CITED

- Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A. R., and Abbaszadeh, A. (2014). "Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi," *Journal de Mycologie Medicale* 24(2), e51-e56. DOI: 10.1016/j.mycmed.2014.01.063
- Abd-Ellatif, S., Ibrahim, A. A., Safhi, F. A., Abdel Razik, E. S., Kabeil, S. S., Aloufi, S., Alyamani, A. A., Basuoni, M. M., ALshamrani, S. M., and Elshafie, H. S. (2022). "Green synthesized of *Thymus vulgaris* chitosan nanoparticles induce relative WRKY-genes expression in *Solanum lycopersicum* against *Fusarium solani*, the causal agent of root rot disease," *Plants* 11(22), article 3129. DOI: 10.3390/plants11223129
- Abo Elgat, W. A. A., Kordy, A. M., Böhm, M., Černý, R., Abdel-Megeed, A., and Salem, M. Z. M. (2020). "Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis essential oils as antifungal activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum," Processes 8(8), article 1003. DOI: 10.3390/pr8081003
- Afifi, H. A. M., Mansour, M. M. A., Hassan, A. G. A. I., and Salem, M. Z. M. (2023). "Biodeterioration effects of three *Aspergillus* species on stucco supported on a

- wooden panel modeled from Sultan al-Ashraf Qaytbay Mausoleum, Egypt," *Scientific Reports* 13(1), article 15241. DOI: 10.1038/s41598-023-42028-x
- Ali, H. M., Elgat, W. A. A., El-Hefny, M., Salem, M. Z. M., Taha, A. S., Al Farraj, D. A., Elshikh, M. S., Hatamleh, A. A., and Abdel-Salam, E. M. (2021). "New approach for using of *Mentha longifolia* L. and *Citrus reticulata* L. essential oils as woodbiofungicides: GC-MS, SEM, and MNDO quantum chemical studies," *Materials* 14(6), article 1361. DOI: 10.3390/ma14061361
- Allsopp, D., Seal, K. J., and Gaylarde, C. C. (2004). *Introduction to Biodeterioration*, Cambridge University Press, Cambridge, MA, USA.
- Arnal-Schnebelen, B., Hadji-Minaglou, F., Peroteau, J. F., Ribeyre, F., and de Billerbeck, V. G. (2004). "Essential oils in infectious gynaecological disease: A statistical study of 658 cases," *International Journal of Aromatherapy* 14(4), 192-197. DOI: 10.1016/j.ijat.2004.09.003
- Behiry, S. I., Nasser, R. A., Abd El-Kareem, S. M., Ali, H. M., and Salem, M. Z. M. (2020). "Mass spectroscopic analysis, MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented gum against three common molds," *Processes* 8(3), article ID 275. DOI: 10.3390/pr8030275
- Ben Arfa, A., Combes, S., Preziosi-Belloy, L., Gontard, N., and Chalier, P. (2006). "Antimicrobial activity of carvacrol related to its chemical structure," *Letters in Applied Microbiology* 43(2), 149-154. DOI: 10.1111/j.1472-765X.2006.01938.x
- Brischke, C., and Alfredsen, G. (2020). "Wood-water relationships and their role for wood susceptibility to fungal decay," *Applied Microbiology and Biotechnology* 104(9), 3781-3795. DOI: 10.1007/s00253-020-10479-1
- Cai, R., Hu, M., Zhang, Y., Niu, C., Yue, T., Yuan, Y., and Wang, Z. (2019). "Antifungal activity and mechanism of citral, limonene and eugenol against *Zygosaccharomyces rouxii*," *LWT* 106, 50-56. DOI: 10.1016/j.lwt.2019.02.059
- Cárdenas-Ortega, N. C., Zavala-Sánchez, M. A., Aguirre-Rivera, J. R., Pérez-González, C., and Pérez-Gutiérrez, S. (2005). "Chemical composition and antifungal activity of essential oil of *Chrysactinia mexicana* Gray," *Journal of Agricultural and Food Chemistry* 53(11), 4347-4349. DOI: 10.1021/jf040372h
- Casarin, L. S., Casarin, F. d. O., Brandelli, A., Novello, J., Ferreira, S. O., and Tondo, E. C. (2016). "Influence of free energy on the attachment of *Salmonella Enteritidis* and *Listeria monocytogenes* on stainless steels AISI 304 and AISI 316," *LWT Food Science and Technology* 69, 131-138. DOI: 10.1016/j.lwt.2016.01.035
- Cheng, S.-S., Liu, J.-Y., Chang, E.-H., and Chang, S.-T. (2008). "Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi," *Bioresource Technology* 99(11), 5145-5149. DOI: 10.1016/j.biortech.2007.09.013
- Cheng, S.-S., Liu, J.-Y., Hsui, Y.-R., and Chang, S.-T. (2006). "Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (*Cinnamomum osmophloeum*)," *Bioresource Technology* 97(2), 306-312. DOI: 10.1016/j.biortech.2005.02.030
- Cheng, S. S., Liu, J. Y., Chang, E. H., and Chang, S. T. (2008). "Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi," *Bioresource Technology* 99(11), 5145-5149. DOI: 10.1016/j.biortech.2007.09.013
- Chittenden, C., and Singh, T. (2011). "Antifungal activity of essential oils against wood degrading fungi and their applications as wood preservatives," *International Wood Products Journal* 2(1), 44-48. DOI:10.1179/2042645311Y.0000000004

- Correa-Pacheco, Z. N., Bautista-Baños, S., Valle-Marquina, M. Á., and Hernández-López, M. (2017). "The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on *Colletotrichum gloeosporioides* growth *in vitro* and on cv hass avocado and fruit quality," *Journal of Phytopathology* 165(5), 297-305. DOI: 10.1111/jph.12562
- da Cruz Cabral, L., Pinto, V. F., and Patriarca, A. (2013). "Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods," *International Journal of Food Microbiology* 166(1), 1-14. DOI: 10.1016/j.ijfoodmicro.2013.05.026
- Eldeeb, H. M. A., Ali, M. F., Mansour, M. M. A., Ali Ahmed, M. A., and Salem, M. Z. M. (2022). "Monitoring the effects of fungi isolated from archival document on model albumen silver prints," *Microbial Pathogenesis* 169, article 105632. DOI: 10.1016/j.micpath.2022.105632
- Elshaer, M. A. A., Abd-Elraheem, M. A. M., Taha, A. S., Abo-Elgat, W. A. A., Abdel-Megeed, A., and Salem, M. Z. M. (2024). "Green synthesis of silver and ferric oxide nanoparticles using *Syzygium cumini* leaf extract and their antifungal activity when applied to oak wood and paper pulp from *Imperata cylindrica* grass biomass," *Waste and Biomass Valorization* 2024, available online. DOI: 10.1007/s12649-024-02555-8
- Finney, D. J. (1952). "Probit analysis (2nd Ed)," *Journal of the Institute of Actuaries* 78(3), 388-390.
- Gershenzon, J., and Croteau, R. B. (2018). "Terpenoid biosynthesis: The basic pathway and formation of monoterpenes, sesquiterpenes, and diterpenes," in: *Lipid Metabolism in Plants*, CRC Press, Boca Raton, FL, USA, pp. 339-388.
- Geweely, N. S., Abu Taleb, A. M., Grenni, P., Caneva, G., Atwa, D. M., Plaisier, J. R., and Ibrahim, S. (2024). "Eco-friendly preservation of pharaonic wooden artifacts using natural green products," *Applied Sciences* 14(12), article 5023. DOI: 10.3390/app14125023
- Goodell, B., Qian, Y., and Jellison, J. (2008). "Fungal decay of wood: Soft rot—brown rot—white rot," In: *Development of Commercial Wood Preservatives*, Vol. 982, American Chemical Society, Washington, D.C., USA, pp. 9-31. DOI: 10.1021/bk-2008-0982.ch002
- GOST-9.048-89 (1975). "Materials and Products. Methods for Testing Resistance to Microorganisms," Euro-Asian Council for Standardization, Metrology and Certification, Moscow, Russia.
- Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., and Scherer, R. (2019). "Antibacterial activity of terpenes and terpenoids present in essential oils," *Molecules* 24(13), article 2471. DOI: 10.3390/molecules24132471
- Gupta, I., Singh, R., Muthusamy, S., Sharma, M., Grewal, K., Singh, H. P., and Batish, D. R. (2023). "Plant essential oils as biopesticides: Applications, mechanisms, innovations, and constraints," *Plants* 12(16), article 2916. DOI: 10.3390/plants12162916
- Hu, J., Chang, S., Peng, K., Hu, K., and Thévenon, M.-F. (2015). "Bio-susceptibility of shells of *Camellia oleifera* Abel. fruits to fungi and termites," *International Biodeterioration & Biodegradation* 104, 219-223. DOI: 10.1016/j.ibiod.2015.06.011
- Humar, M., and Pohleven, F. (2005). "Influence of a nitrogen supplement on the growth of wood decay fungi and decay of wood," *International Biodeterioration & Biodegradation* 56(1), 34-39. DOI: 10.1016/j.ibiod.2005.03.008

- Hyldgaard, M., Mygind, T., and Meyer, R. L. (2012). "Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components," *Front Microbiol* 3, article 12. DOI: 10.3389/fmicb.2012.00012
- Igoe, R. S., Hui, Y., Igoe, R. S., and Hui, Y. (1999). "Substances for use in foods," in: *Dictionary of Food Ingredients*, Springer Science +Business Media, Berlin, Germany, pp. 159-185.
- Khursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., Malik, N. A., and Majid, S. A. (2022). "Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects," *Microbial Pathogenesis* 173, article ID 105854. DOI: 10.1016/j.micpath.2022.105854
- Kim, M.-J., Choi, Y.-S., Oh, J.-J., and Kim, G.-H. (2020). "Experimental investigation of the humidity effect on wood discoloration by selected mold and stain fungi for a proper conservation of wooden cultural heritages," *Journal of Wood Science* 66(1), article 31. DOI: 10.1186/s10086-020-01878-z
- Krivushina, A. A., Bobyreva, T. V., and Smirnov, D. N. (2022). "Fungal resistance of thiokol sealants to tropical microorganisms and test cultures. Part 1," *Polymer Science, Series D* 15(2), 177-182. DOI: 10.1134/S1995421222020149
- Loh, Y. F., Paridah, T. M., Hoong, Y. B., Bakar, E. S., Anis, M., and Hamdan, H. (2011). "Resistance of phenolic-treated oil palm stem plywood against subterranean termites and white rot decay," *International Biodeterioration & Biodegradation* 65(1), 14-17. DOI: 10.1016/j.ibiod.2010.05.011
- López, P., Sánchez, C., Batlle, R., and Nerín, C. (2005). "Solid- and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains," *Journal of Agricultural and Food Chemistry* 53(17), 6939-6946. DOI: 10.1021/jf050709v
- Mansour, M. M. A., Mohamed, W. A., El-Settawy, A. A. A., Böhm, M., Salem, M. Z. M., and Farahat, M. G. S. (2023). "Long-term fungal inoculation of *Ficus sycomorus* and *Tectona grandis* woods with *Aspergillus flavus* and *Penicillium chrysogenum*," *Scientific Reports* 13(1), article 10453. DOI: 10.1038/s41598-023-37479-1
- Marchese, A., Arciola, C. R., Coppo, E., Barbieri, R., Barreca, D., Chebaibi, S., Sobarzo-Sánchez, E., Nabavi, S. F., Nabavi, S. M., and Daglia, M. (2018). "The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: mechanisms, synergies and bio-inspired anti-infective materials," *Biofouling* 34(6), 630-656. DOI: 10.1080/08927014.2018.1480756
- Marei, G. I. K., Abdel Rasoul, M. A., and Abdelgaleil, S. A. M. (2012). "Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi," *Pesticide Biochemistry and Physiology* 103(1), 56-61. DOI: 10.1016/j.pestbp.2012.03.004
- Memar, M. Y., Raei, P., Alizadeh, N., Akbari Aghdam, M., and Kafil, H. S. (2017). "Carvacrol and thymol: Strong antimicrobial agents against resistant isolates," *Reviews and Research in Medical Microbiology* 28(2), 63-68. DOI: 10.1097/MRM.000000000000000000
- Meyer, L., and Brischke, C. (2015). "Fungal decay at different moisture levels of selected European-grown wood species," *International Biodeterioration & Biodegradation* 103, 23-29. DOI: 10.1016/j.ibiod.2015.04.009
- Miladi, H., Zmantar, T., Kouidhi, B., Al Qurashi, Y. M. A., Bakhrouf, A., Chaabouni, Y., Mahdouani, K., and Chaieb, K. (2017). "Synergistic effect of eugenol, carvacrol,

- thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria," *Microbial Pathogenesis* 112, 156-163. DOI: 10.1016/j.micpath.2017.09.057
- Mohareb, A. S. O., Elashmawy, M. A. A., Nawar, M. E. M., Abdelrahman, A. K., Ahmed, F. M., Hassona, A. E. A., and Salem, M. Z. M. (2023). "Chemical compositions and antifungal activity of *Corymbia citriodora, Cupressus macrocarpa* and *Syzygium cumini* extracts: GC-MS and HPLC analysis of essential oils and phenolic compounds," *Biomass Conversion and Biorefinery*. DOI: 10.1007/s13399-023-05106-8
- Nedorostova, L., Kloucek, P., Kokoska, L., Stolcova, M., and Pulkrabek, J. (2009). "Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria," *Food Control* 20(2), 157-160. DOI: 10.1016/j.foodcont.2008.03.007
- Nostro, A., and Papalia, T. (2012). "Antimicrobial activity of carvacrol: Current progress and future prospectives," *Recent Patents on Anti-Infective Drug Discovery* 7(1), 28-35. DOI: 10.2174/157489112799829684
- Olea, A. F., Bravo, A., Martínez, R., Thomas, M., Sedan, C., Espinoza, L., Zambrano, E., Carvajal, D., Silva-Moreno, E., Carrasco, H. (2019). "Antifungal activity of eugenol derivatives against *Botrytis Cinerea*," *Molecules* 24(7), article 1239. DOI: 10.3390/molecules24071239.
- Park, M. J., Gwak, K. S., Yang, I., Kim, K. W., Jeung, E. B., Chang, J. W., and Choi, I. G. (2009). "Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of *Trichophyton mentagrophytes*," *Fitoterapia* 80(5), 290-296. DOI: 10.1016/j.fitote.2009.03.007
- Patonay, K., Szalontai, H., Radácsi, P., and Zámboriné-Németh, É. (2021). "Chemotypes and their stability in *Mentha longifolia* (L.) L.—A comprehensive study of five accessions," *Plants* 10(11), article 2478. DOI: 10.3390/plants10112478
- Pinto, E., Pina-Vaz, C., Salgueiro, L., Gonçalves, M. J., Costa-de-Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., and Martinez-de-Oliveira, J. (2006). "Antifungal activity of the essential oil of *Thymus pulegioides* on *Candida*, *Aspergillus* and dermatophyte species," *Journal of Medical Microbiology* 55(10), 1367-1373. DOI: 10.1099/jmm.0.46443-0
- Prakash, B., Shukla, R., Singh, P., Kumar, A., Mishra, P. K., and Dubey, N. K. (2010). "Efficacy of chemically characterized *Piper betle* L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity," *International Journal of Food Microbiology* 142(1-2), 114-119. DOI: 10.1016/j.ijfoodmicro.2010.06.011
- Rehman, R., Hanif, M. A., Mushtaq, Z., and Al-Sadi, A. M. (2016). "Biosynthesis of essential oils in aromatic plants: A review," *Food Reviews International* 32(2), 117-160. DOI: 10.1080/87559129.2015.1057841
- Reinprecht, L., Pop, D. M., Vidholdová, Z., and Timar, M. C. (2019). "Anti-decay potential of five essential oils against the wood-decaying fungi *Serpula lacrymans* and *Trametes versicolor*," *Acta Facultatis Xylologiae Zvolen res Publica Slovaca* 61(2), 63-72. DOI: 10.17423/afx.2019.61.2.06
- Salem, M. Z. M., Zidan, Y. E., Mansour, M. M. A., El Hadidi, N. M. N., and Abo Elgat, W. A. A. (2016). "Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi," *International Biodeterioration & Biodegradation* 106(C), 88-96. DOI: 10.1016/j.ibiod.2015.10.010

- Salem, M. Z. M., Hamed, S. A. M., and Mansour, M. M. A. (2019). "Assessment of efficacy and effectiveness of some extracted bio-chemicals as bio-fungicides on Wood," *Drvna Industrija* 70(4), 337-350. DOI: 10.5552/drvind.2019.1837
- Shakam, H. M., Mohamed, A. A., and Salem, M. Z. M. (2022). "Down-regulatory effect of essential oils on fungal growth and Tri4 gene expression for some *Fusarium oxysporum* strains: GC-MS analysis of essential oils," *Archives of Phytopathology and Plant Protection* 55(8), 951-972. DOI: 10.1080/03235408.2022.2064081
- Sharifi-Rad, M., Varoni, E. M., Iriti, M., Martorell, M., Setzer, W. N., del Mar Contreras, M., Salehi, B., Soltani-Nejad, A., Rajabi, S., Tajbakhsh, M., *et al.* (2018). "Carvacrol and human health: A comprehensive review," *Phytotherapy Research* 32(9), 1675-1687. DOI: 10.1002/ptr.6103
- Sikkema, J., de Bont, J. A., and Poolman, B. (1995). "Mechanisms of membrane toxicity of hydrocarbons," *Microbiological Reviews* 59(2), 201-222. DOI: 10.1128/mr.59.2.201-222.1995
- Soares-Castro, P., Soares, F., and Santos, P. M. (2020). "Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds," *Molecules* 26(1), article 91. DOI: 10.3390/molecules26010091
- Taha, A. S., Abo Elgat, W. A. A., Fares, Y. G. D., Dessoky, E. S., Behiry, S. I., and Salem, M. Z. M. (2021). "Using plant extractives as eco-friendly pulp additives: Mechanical and antifungal properties of paper sheets made from linen fibers," *BioResources* 16(2), 2589-2606. DOI: 10.15376/biores.16.2.2589-2606
- Taha, A. S., Salem, M. Z. M., Abo Elgat, W. A., Ali, H. M., Hatamleh, A. A., and Abdel-Salam, E. M. (2019). "Assessment of the impact of different treatments on the technological and antifungal properties of papyrus (*Cyperus papyrus* L.) sheets," *Materials* 12(4), article 620. DOI: 10.3390/ma12040620
- Ultee, A., Slump, R. A., Steging, G., and Smid, E. J. (2000). "Antimicrobial activity of carvacrol toward *Bacillus cereus* on rice," *Journal of Food Protection* 63(5), 620-624. DOI: 10.4315/0362-028X-63.5.620
- Wang, S.-Y., Chen, P.-F., and Chang, S.-T. (2005a). "Antifungal activities of essential oils and their constituents from indigenous cinnamon (*Cinnamomum osmophloeum*) leaves against wood decay fungi," *Bioresource Technology* 96(7), 813-818. DOI: 10.1016/j.biortech.2004.07.010
- Wang, S.-Y., Wu, C.-L., Chu, F.-H., Chien, S.-C., Kuo, Y.-H., Shyur, L.-F., and Chang, S.-T. (2005b). Chemical composition and antifungal activity of essential oil isolated from *Chamaecyparis formosensis* Matsum. wood," *Holzforschung* 59(3), 295-299. DOI: 10.1515/HF.2005.049
- Wang, Y., Yang, Q., Zhao, F., Li, M., and Ju, J. (2024). "Synergistic antifungal mechanism of eugenol and citral against *Aspergillus niger*: Molecular Level," *Industrial Crops and Products* 213, article 118435. DOI: 10.1016/j.indcrop.2024.118435
- Wuryatmo, E., Klieber, A., and Scott, E. S. (2003). "Inhibition of citrus postharvest pathogens by vapor of citral and related compounds in culture," *Journal of Agricultural and Food Chemistry* 51(9), 2637-2640. DOI: 10.1021/jf0261831
- Xie, Y., Wang, Z., Huang, Q., and Zhang, D. (2017). "Antifungal activity of several essential oils and major components against wood-rot fungi," *Industrial Crops and Products* 108, 278-285. DOI: 10.1016/j.indcrop.2017.06.041

- Yen, T.-B., and Chang, S.-T. (2008). "Synergistic effects of cinnamaldehyde in combination with eugenol against wood decay fungi," *Bioresource Technology* 99(1), 232-236. DOI: 10.1016/j.biortech.2006.11.022
- Yingngam, B. (2022). "Chemistry of essential oils," in: Flavors and Fragrances in Food Processing: Preparation and Characterization Methods, American Chemical Society Vol. 1433, Washington, D.C., USA, pp. 189-223. DOI: 10.1021/bk-2022-1433.ch003
- Zabel, R. A., and Morrell, J. J. (2012). *Wood Microbiology: Decay and its Prevention*, Academic Press, Cambridge, MA, USA.
- Zhang, Z., Yang, T., Mi, N., Wang, Y., Li, G., Wang, L., and Xie, Y. (2016). "Antifungal activity of monoterpenes against wood white-rot fungi," *International Biodeterioration & Biodegradation* 106, 157-160. DOI: 10.1016/j.ibiod.2015.10.018
- Zhang, Z., Xie, Y., Hu, X., Shi, H., Wei, M., and Lin, Z. (2018). "Antifungal activity of monoterpenes against *Botryosphaeria dothidea*," *Natural Product Communications* 13(12), article ID 1934578X1801301234. DOI: 10.1177/1934578X1801301234
- Zuzarte, M., and Salgueiro, L. (2015). "Essential oils chemistry," in: *Bioactive Essential Oils and Cancer*, D. P. de Sousa (Ed.), Springer International Publishing, Cham, Switzerland, pp. 19-61. DOI: 10.1007/978-3-319-19144-7_2

Article submitted: September 2, 2024; Peer review completed: September 28, 2024; Revised version received: October 9, 2024; Accepted: October 17, 2024; Published: November 15, 2024,

DOI: 10.15376/biores.20.1.393-412