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Due to wood’s susceptibility to fire, it is crucial to treat wood-based 
materials with flame retardants, especially in construction applications. 
This study investigated the effectiveness of various grooving types, 
including transverse, longitudinal, both transverse and longitudinal, and 
surface grooving, in enhancing the vacuum pressure impregnation of larch 
wood. The results revealed that transverse grooving provided a slightly 
greater impregnation advantage than longitudinal grooving. Moreover, 
exceptional impregnation performance was observed in larch samples 
subjected to threefold longitudinal, transverse, and surface grooving, 
exhibiting a remarkable improvement of 215% compared to untreated 
larch. However, a limitation of this study is that only one wood species and 
one flame retardant formulation were used. While it is meaningful as a 
preliminary investigation into the vacuum pressure impregnation 
performance of flame-retardant wood based on groove processing, further 
studies using various wood species and flame retardants. 
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INTRODUCTION 
 

 Wood has served as a fundamental construction material since ancient times (Eder 

et al. 2021). Compared to steel, concrete, and glass, the use of wood consumes relatively 

little energy during its manufacturing and disposal (Sandoli et al. 2021; Lin et al. 2023). 

Consequently, incorporating wood into construction supports the achievement of carbon 

neutrality (Scouse et al. 2020; Talvitie et al. 2021; Jang and Kang 2022b).  

Notably, contemporary architecture has witnessed a rapidly growing interest in the 

construction of high-rise buildings using wood (Li et al. 2019). In 2019, an 85.4 m tall, 18-

story multi-purpose timber building was completed in Brumunddal, Norway (WCN 2019). 

In 2022, an 86.5-m, 25-story wooden structure was completed in Milwaukee, Wisconsin. 

It is officially the tallest mass timber building in the world to date (USDA 2022). 

Furthermore, there is an ongoing project in Japan to construct a 70-story wooden 

skyscraper in Tokyo, reaching a height of 350 m. The building's inner frame is constructed 

entirely of timber, while the outer frame utilizes a hybrid structure. This combination 

ensures the structural integrity of the building, allowing it to withstand strong winds and 

earthquakes (Harada et al. 2020).  
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High-rise wooden buildings promote a sustainable building industry and contribute 

to resource conservation and environmentally friendly construction (Mirzaakbarovna and 

Sultanbayevich 2021). These structures are also regarded as artistic expressions that fuse 

the modern with the traditional.  

Wood is inherently vulnerable to fire hazards, making fire safety a critical 

consideration in the design and use of wooden structures (Pabeliña et al. 2012; Jian et al. 

2023). Therefore, flame retardant treatment is required to suppress, significantly reduce, or 

retard the combustion of wood. These treatment methods typically include surface 

treatment or coating with flame retardant chemicals and the impregnation of wood with 

chemical solutions or nanocomposites (Pabeliña et al. 2012; Wang et al. 2022). 

 This study focused on the vacuum pressure impregnation process for flame 

retardants. The vacuum pressure impregnation process is commonly known as the Bethel 

process or the full-cell impregnation process (Bryan 1932). This process impregnates the 

wood with chemicals in a sequence of steps including a vacuum, pressure, soaking time, 

drainage, and drying (Xu et al. 2020). Originally, this process was used for preserving 

wood, but it has also become widely used to impregnate wood with fire retardants (Rejeesh 

and Saju 2017; Xu et al. 2020). 

The performance of the vacuum pressure impregnation process is affected by 

variables such as the species of wood, flow characteristics of chemicals, impregnation 

pressure, temperature, and impregnation time (Schneider et al. 2003; Yildiz et al. 2012). 

Jang and Kang (2023b) investigated the effects of pressure, temperature, and time 

on larch (Larix kaempferi) and pine (Pinus koraiensis) wood impregnation using multiple 

regression analysis. Their study revealed that impregnation pressure had the most 

significant impact on the impregnation process, while time and temperature had 

comparatively less influence among the variables. This study suggests that controlling and 

optimizing the impregnation pressure can be crucial in achieving desired results in wood 

impregnation.  

However, these methods alone have limitations in improving the pressure 

impregnation process for impermeable wood. Thus, physical pre-treatment, such as boring 

and incision, are widely used to enhance the vacuum pressure impregnation process for 

impermeable wood species (Yildiz et al. 2010; Park et al. 2017). Islam et al. (2008) applied 

laser incisions to Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) under various 

conditions, and the optimum incision density was found to be 7,500 holes/m2. Fukuta et al. 

(2022) reported that improved flame-retardant penetration was observed in wood 

pretreated by laser micro incisions with depths of 6 mm or less.  

Park et al. (2017) conducted experiments involving kerfing and boring 

combinations under various conditions to improve the permeability of flame retardants. 

After comprehensively evaluating the permeability and the mechanical strength of the 

wood treated with flame retardant, they recommended a combination of 5 mm (D) x 3.5 

mm (W) kerfing and boring with hole diameter of 12 mm or less.  

Jang and Kang (2023a) introduced a steam explosion treatment as a means to 

improve the capabilities of wood following pressure impregnation. This treatment 

subjected the wood to steam and subsequent rapid decompression, which resulted in the 

creation of microcracks in the cell walls of the wood. This process led to an increased open 

pore content in the wood, ultimately enhancing the impregnation process. However, the 

physical properties of the wood treated with this method have not been identified, and there 

are limitations in applying this method to large-sized timber.  
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Hence, this study proposes a grooving process as a vacuum pressure impregnation 

pretreatment technique that can be readily implemented for large timber. This method 

involves creating grooves in the longitudinal and transverse directions. Transverse 

grooving can increase the exposure of the wood's tracheids compared to the longitudinal 

direction. We expect that the increased exposure of the tracheids will improve the 

permeability of the wood and thus improve the impregnation efficiency.  

Hardwoods transport water and nutrients through vessels, and their pore size is 

relatively large compared to the pores within the structure of softwoods. Softwoods 

transport water mainly through the lumen spaces within tracheids, which are long and 

narrow and have low permeability. Among softwoods, larch has well-developed resin 

canals, and the pits of the tracheids have thick and complex structures, making it a species 

with low permeability (Kolya and Kang 2021; Song et al. 2022). Therefore, this study 

selected Korean larch (L. kaempferi) as a suitable tree species for a preliminary 

investigation into the vacuum pressure impregnation performance of flame retardants, 

depending on the grooving type. 

 

 

EXPERIMENTAL 
 

Specimen Preparation 
This study used Korean larch, a representative impermeable wood, as the subject 

material. We sourced dried lumber from a domestic lumber supplier, and samples were cut 

to 1,030 mm (L) x 100 mm (W) x 19 mm (T). Their air-dried density was 0.57 g/cm3 and 

their moisture content was 12.9%. 

 

Grooving Process 
Five types of samples were prepared to compare the efficacy of the flame 

retardant’s vacuum pressure impregnation by grooving style. Sample A was the control 

group. Sample B was grooved longitudinally with a width of 3 mm and a depth of 7 mm. 

Sample C was grooved transversely. Sample D was grooved both longitudinally and 

transversely. Sample E was grooved both longitudinally and transversely and had 

additional surface irregularities. Figure 1 provides diagrams of the grooving types of the 

larch samples used in this study. 

 

 
 

Fig. 1. Grooving process of Korean larch 
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Flame Retardant 
This study used a water-soluble flame retardant (SafeWood Co Ltd., Korea), whose 

main ingredients were ammonium phosphate dibasic and additives. The resin content on a 

dry mass basis of each sample was about 27%, the specific gravity was 1.13, and the pH 

was 7.6. A 3% dilution of water-soluble blue ink was added to the flame-retardant 

formulation to easily check the permeability of the flame-retardant with the naked eye. 

 

Vacuum Pressure Impregnation Process 
This study utilized a wood vacuum pressure impregnation chamber that was 

developed in house at Jeonbuk National University. The specimens were placed in the 

chamber and depressurized at -0.1 MPa for 5 min using a vacuum pump. Then, the flame 

retardant was added while maintaining a vacuum in the chamber and pressurized at a 

pressure of 20 kgf/cm² (285 psi) for a range of times up to 720 min using a pressurization 

pump to inject the flame retardant into the test specimen. After the flame retardant was 

injected, the pressure was released, the flame remaining retardant was recovered, and the 

vacuum pump was operated to decompress the samples for 5 min to recover the flame 

retardant from the wood surface, completing the flame-retardant impregnation process. 
 

Flame Retardant Impregnation Amount 
The impregnated samples were collected every 30 min for the first 60 min and every 

60 min thereafter until 720 min. Each specimen was weighed before and after flame 

retardant impregnation, and the difference was used to calculate the amount of impregnated 

flame retardant, as shown in Eq. 1, 
 

𝐷 =
𝑚2−𝑚1

𝑉
          (1)  

 

where D is the flame-retardant dosage (kg/m3), m1 and m2 are the sample weight before 

and after flame-retardant impregnation (kg), respectively, and V is the sample volume (m3). 

In addition, the samples were cut at intervals of 10 cm vertically to calculate the flame-

retardant impregnation amount for each length, and visual inspection was also conducted. 
 

 

RESULTS AND DISCUSSION 
 

Impregnation Performance 
Figure 2 provides impregnation performance depending on the grooving type. All 

five samples demonstrated that the flame-retardant impregnation amount increased as the 

impregnation time was increased. This is a typical trend for the vacuum-pressure 

impregnation process (Jang and Kang 2023a,b). The impregnated amount varied depending 

on the grooving type. At 720 min, the control (sample A) had an impregnation mass per 

unit volume of 168.3 kg/m3, while it was 234.5 kg/m3 for sample B, 237.5 kg/m3 for sample 

C, 278.0 for sample D, and 361.3 kg/m3 for sample E. The impregnation performance of 

the longitudinally grooved samples was enhanced by approximately 139.3% compared to 

the control, while the transversely grooved samples showed an improvement of 141.1%. 

The transversely grooved larch exhibited better impregnation performance due to increased 

exposure of tracheids, which have higher permeability in the cross-section of the wood. 

However, the difference between the grooving directions was just 1.8% due to the larch's 

pit aspiration. Pit aspiration in conifers is well-known as a cause of reduced permeability 

(Comstock and Côté Jr 1968; Bao et al. 2001). 
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Fig. 2. Impregnation performance depending on the grooving type 
 

When both transverse and longitudinal grooving was applied to the fibers, the 

impregnation performance was enhanced by around 165.2%. Furthermore, adding surface 

grooving processing to the longitudinal and transverse grooved sample resulted in a notable 

improvement of approximately 214.7%. This suggests that the surface grooving processing 

enhanced flame-retardant absorption by increasing the wood’s specific surface area. 

Figure 3 shows the impregnated amount in the longitudinal direction depending on 

the grooving type. All larch samples showed high flame-retardant impregnation at both 

ends but a gradual decrease in impregnation toward the center.  

 

 
 

Fig. 3. Comparison of impregnation performance in the longitudinal direction depending on the type 
of grooving 
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The difference between the maximum and minimum impregnation amounts in the 

control group was 276.2 kg/m3. It was 194.2 kg/m3 for sample A, 194.2 kg/m3 for sample 

B, 155.5 kg/m3 for sample C, 150.0 kg/m3 for sample D, and 106.9 kg/m3 for sample E. As 

a result, the flame-retardant impregnated amount was more even in the transverse grooving 

than in the longitudinal grooving, and the flame retardant was more evenly impregnated 

when grooving in both the longitudinal and transverse directions and when surface 

roughness processing was added. As the exposure of tracheids increased and the surface 

area of the wood increased, the flame retardant was impregnated increasingly evenly. 

 
Visual Inspection 

Figure 4 displays the results of visual inspection of impregnation in the longitudinal 

direction depending on the grooving type. In the untreated wood, the flame retardant was 

impregnated only at both ends and barely penetrated the center. However, it was confirmed 

with the naked eye that the flame retardant penetrated evenly to the central part according 

to the additional groove processing. This shows the impregnated amount in the order of 

A<B<C<D<E following the same trend as Fig. 3. 

Anatomically, fire retardants penetrate softwood through tracheids aligned in the 

direction of the fibers. However, due to the well-developed resin canals and the thick pits 

of the tracheids, penetration beyond a certain depth is challenging. The groove processing 

that was done in the present work helped evenly impregnate the wood with fire retardants 

to overcome this limitation. 

 

 
 

Fig. 4. Visual inspection of impregnation in the longitudinal direction depending on the grooving 
type 

 

This study served as a preliminary investigation into the impact of grooving on 

enhancing larch’s flame-retardant-impregnated amount. Future research will explore the 

alterations in physical properties resulting from groove machining. The aim will be to 

identify a groove processing technique that optimizes the impregnated amount while 

minimizing changes in the physical properties of the treated wood. The goal here is to 

incorporate not only new grooving processes but also a range of physical and chemical 

treatment methods to enhance the permeability of wood. Previous studies have reported 

that the permeability of wood can be improved through heat treatment, physical treatments 
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such as ultrasound or microwave, and chemical treatments such as delignification. 

Accordingly, the plan is to conduct additional studies on enhancing the impregnation of 

flame retardants by applying these technologies (Jang and Kang 2022a, 2023c). Ultimately, 

this study aims to improve the flame-retardant impregnation process for larch, a species 

known for its low permeability. 

In the future, this research will be expanded by applying the technology of 

additionally coating flame retardants, such as ammonium phosphate, onto wood 

impregnated with flame retardants under vacuum pressure. Furthermore, to apply this 

technology industrially, it is necessary to research the economic benefits of groove 

processing compared to other treatment methods for improving the flame retardancy of 

wood. 

 

 

CONCLUSIONS 
 
1. The study focused on utilizing grooving pretreatment processes to enhance the flame-

retardant impregnation of Korean larch, a wood species known for its impermeable 

characteristics. The flame retardant was more effectively impregnated when the 

grooves were made in the cross-fiber direction rather than the longitudinal direction. 

2. When groove processing was performed in both longitudinal and transverse directions 

for 720 min, and groove processing was added to the surface, this resulted in the highest 

flame-retardant impregnated amount. This approach yielded approximately 214.7% 

improved impregnated amount compared to untreated larch. 
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