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Preliminary Investigation on The Vacuum Pressure
Impregnation Performance of Flame Retardant for Larch
(Larix kaempferi) Depending on Grooving Type
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Due to wood’s susceptibility to fire, it is crucial to treat wood-based
materials with flame retardants, especially in construction applications.
This study investigated the effectiveness of various grooving types,
including transverse, longitudinal, both transverse and longitudinal, and
surface grooving, in enhancing the vacuum pressure impregnation of larch
wood. The results revealed that transverse grooving provided a slightly
greater impregnation advantage than longitudinal grooving. Moreover,
exceptional impregnation performance was observed in larch samples
subjected to threefold longitudinal, transverse, and surface grooving,
exhibiting a remarkable improvement of 215% compared to untreated
larch. However, a limitation of this study is that only one wood species and
one flame retardant formulation were used. While it is meaningful as a
preliminary investigation into the vacuum pressure impregnation
performance of flame-retardant wood based on groove processing, further
studies using various wood species and flame retardants.
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INTRODUCTION

Wood has served as a fundamental construction material since ancient times (Eder
et al. 2021). Compared to steel, concrete, and glass, the use of wood consumes relatively
little energy during its manufacturing and disposal (Sandoli et al. 2021; Lin et al. 2023).
Consequently, incorporating wood into construction supports the achievement of carbon
neutrality (Scouse et al. 2020; Talvitie et al. 2021; Jang and Kang 2022b).

Notably, contemporary architecture has witnessed a rapidly growing interest in the
construction of high-rise buildings using wood (Li et al. 2019). In 2019, an 85.4 m tall, 18-
story multi-purpose timber building was completed in Brumunddal, Norway (WCN 2019).
In 2022, an 86.5-m, 25-story wooden structure was completed in Milwaukee, Wisconsin.
It is officially the tallest mass timber building in the world to date (USDA 2022).
Furthermore, there is an ongoing project in Japan to construct a 70-story wooden
skyscraper in Tokyo, reaching a height of 350 m. The building's inner frame is constructed
entirely of timber, while the outer frame utilizes a hybrid structure. This combination
ensures the structural integrity of the building, allowing it to withstand strong winds and
earthquakes (Harada et al. 2020).
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High-rise wooden buildings promote a sustainable building industry and contribute
to resource conservation and environmentally friendly construction (Mirzaakbarovna and
Sultanbayevich 2021). These structures are also regarded as artistic expressions that fuse
the modern with the traditional.

Wood is inherently vulnerable to fire hazards, making fire safety a critical
consideration in the design and use of wooden structures (Pabelifia et al. 2012; Jian et al.
2023). Therefore, flame retardant treatment is required to suppress, significantly reduce, or
retard the combustion of wood. These treatment methods typically include surface
treatment or coating with flame retardant chemicals and the impregnation of wood with
chemical solutions or nanocomposites (Pabelifia et al. 2012; Wang et al. 2022).

This study focused on the vacuum pressure impregnation process for flame
retardants. The vacuum pressure impregnation process is commonly known as the Bethel
process or the full-cell impregnation process (Bryan 1932). This process impregnates the
wood with chemicals in a sequence of steps including a vacuum, pressure, soaking time,
drainage, and drying (Xu et al. 2020). Originally, this process was used for preserving
wood, but it has also become widely used to impregnate wood with fire retardants (Rejeesh
and Saju 2017; Xu et al. 2020).

The performance of the vacuum pressure impregnation process is affected by
variables such as the species of wood, flow characteristics of chemicals, impregnation
pressure, temperature, and impregnation time (Schneider et al. 2003; Yildiz et al. 2012).

Jang and Kang (2023b) investigated the effects of pressure, temperature, and time
on larch (Larix kaempferi) and pine (Pinus koraiensis) wood impregnation using multiple
regression analysis. Their study revealed that impregnation pressure had the most
significant impact on the impregnation process, while time and temperature had
comparatively less influence among the variables. This study suggests that controlling and
optimizing the impregnation pressure can be crucial in achieving desired results in wood
impregnation.

However, these methods alone have limitations in improving the pressure
impregnation process for impermeable wood. Thus, physical pre-treatment, such as boring
and incision, are widely used to enhance the vacuum pressure impregnation process for
impermeable wood species (Yildiz et al. 2010; Park et al. 2017). Islam et al. (2008) applied
laser incisions to Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) under various
conditions, and the optimum incision density was found to be 7,500 holes/m?. Fukuta et al.
(2022) reported that improved flame-retardant penetration was observed in wood
pretreated by laser micro incisions with depths of 6 mm or less.

Park et al. (2017) conducted experiments involving kerfing and boring
combinations under various conditions to improve the permeability of flame retardants.
After comprehensively evaluating the permeability and the mechanical strength of the
wood treated with flame retardant, they recommended a combination of 5 mm (D) x 3.5
mm (W) kerfing and boring with hole diameter of 12 mm or less.

Jang and Kang (2023a) introduced a steam explosion treatment as a means to
improve the capabilities of wood following pressure impregnation. This treatment
subjected the wood to steam and subsequent rapid decompression, which resulted in the
creation of microcracks in the cell walls of the wood. This process led to an increased open
pore content in the wood, ultimately enhancing the impregnation process. However, the
physical properties of the wood treated with this method have not been identified, and there
are limitations in applying this method to large-sized timber.
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Hence, this study proposes a grooving process as a vacuum pressure impregnation
pretreatment technique that can be readily implemented for large timber. This method
involves creating grooves in the longitudinal and transverse directions. Transverse
grooving can increase the exposure of the wood's tracheids compared to the longitudinal
direction. We expect that the increased exposure of the tracheids will improve the
permeability of the wood and thus improve the impregnation efficiency.

Hardwoods transport water and nutrients through vessels, and their pore size is
relatively large compared to the pores within the structure of softwoods. Softwoods
transport water mainly through the lumen spaces within tracheids, which are long and
narrow and have low permeability. Among softwoods, larch has well-developed resin
canals, and the pits of the tracheids have thick and complex structures, making it a species
with low permeability (Kolya and Kang 2021; Song et al. 2022). Therefore, this study
selected Korean larch (L. kaempferi) as a suitable tree species for a preliminary
investigation into the vacuum pressure impregnation performance of flame retardants,
depending on the grooving type.

EXPERIMENTAL

Specimen Preparation

This study used Korean larch, a representative impermeable wood, as the subject
material. We sourced dried lumber from a domestic lumber supplier, and samples were cut
to 1,030 mm (L) x 100 mm (W) x 19 mm (T). Their air-dried density was 0.57 g/cm? and
their moisture content was 12.9%.

Grooving Process

Five types of samples were prepared to compare the efficacy of the flame
retardant’s vacuum pressure impregnation by grooving style. Sample A was the control
group. Sample B was grooved longitudinally with a width of 3 mm and a depth of 7 mm.
Sample C was grooved transversely. Sample D was grooved both longitudinally and
transversely. Sample E was grooved both longitudinally and transversely and had
additional surface irregularities. Figure 1 provides diagrams of the grooving types of the
larch samples used in this study.
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Fig. 1. Grooving process of Korean larch
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Flame Retardant

This study used a water-soluble flame retardant (SafeWood Co Ltd., Korea), whose
main ingredients were ammonium phosphate dibasic and additives. The resin content on a
dry mass basis of each sample was about 27%, the specific gravity was 1.13, and the pH
was 7.6. A 3% dilution of water-soluble blue ink was added to the flame-retardant
formulation to easily check the permeability of the flame-retardant with the naked eye.

Vacuum Pressure Impregnation Process

This study utilized a wood vacuum pressure impregnation chamber that was
developed in house at Jeonbuk National University. The specimens were placed in the
chamber and depressurized at -0.1 MPa for 5 min using a vacuum pump. Then, the flame
retardant was added while maintaining a vacuum in the chamber and pressurized at a
pressure of 20 kgf/cm? (285 psi) for a range of times up to 720 min using a pressurization
pump to inject the flame retardant into the test specimen. After the flame retardant was
injected, the pressure was released, the flame remaining retardant was recovered, and the
vacuum pump was operated to decompress the samples for 5 min to recover the flame
retardant from the wood surface, completing the flame-retardant impregnation process.

Flame Retardant Impregnation Amount

The impregnated samples were collected every 30 min for the first 60 min and every
60 min thereafter until 720 min. Each specimen was weighed before and after flame
retardant impregnation, and the difference was used to calculate the amount of impregnated
flame retardant, as shown in Eq. 1,

my;—my

D =T (1)
where D is the flame-retardant dosage (kg/m?), mz and m2 are the sample weight before
and after flame-retardant impregnation (kg), respectively, and V is the sample volume (m?).
In addition, the samples were cut at intervals of 10 cm vertically to calculate the flame-
retardant impregnation amount for each length, and visual inspection was also conducted.

RESULTS AND DISCUSSION

Impregnation Performance

Figure 2 provides impregnation performance depending on the grooving type. All
five samples demonstrated that the flame-retardant impregnation amount increased as the
impregnation time was increased. This is a typical trend for the vacuum-pressure
impregnation process (Jang and Kang 2023a,b). The impregnated amount varied depending
on the grooving type. At 720 min, the control (sample A) had an impregnation mass per
unit volume of 168.3 kg/m?®, while it was 234.5 kg/m? for sample B, 237.5 kg/m? for sample
C, 278.0 for sample D, and 361.3 kg/m?® for sample E. The impregnation performance of
the longitudinally grooved samples was enhanced by approximately 139.3% compared to
the control, while the transversely grooved samples showed an improvement of 141.1%.
The transversely grooved larch exhibited better impregnation performance due to increased
exposure of tracheids, which have higher permeability in the cross-section of the wood.
However, the difference between the grooving directions was just 1.8% due to the larch's
pit aspiration. Pit aspiration in conifers is well-known as a cause of reduced permeability
(Comstock and Coété Jr 1968; Bao et al. 2001).
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Fig. 2. Impregnation performance depending on the grooving type

When both transverse and longitudinal grooving was applied to the fibers, the
impregnation performance was enhanced by around 165.2%. Furthermore, adding surface
grooving processing to the longitudinal and transverse grooved sample resulted in a notable
improvement of approximately 214.7%. This suggests that the surface grooving processing
enhanced flame-retardant absorption by increasing the wood’s specific surface area.

Figure 3 shows the impregnated amount in the longitudinal direction depending on
the grooving type. All larch samples showed high flame-retardant impregnation at both
ends but a gradual decrease in impregnation toward the center.
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Fig. 3. Comparison of impregnation performance in the longitudinal direction depending on the type
of grooving
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The difference between the maximum and minimum impregnation amounts in the
control group was 276.2 kg/m®. It was 194.2 kg/m? for sample A, 194.2 kg/m? for sample
B, 155.5 kg/m? for sample C, 150.0 kg/m? for sample D, and 106.9 kg/m? for sample E. As
a result, the flame-retardant impregnated amount was more even in the transverse grooving
than in the longitudinal grooving, and the flame retardant was more evenly impregnated
when grooving in both the longitudinal and transverse directions and when surface
roughness processing was added. As the exposure of tracheids increased and the surface
area of the wood increased, the flame retardant was impregnated increasingly evenly.

Visual Inspection

Figure 4 displays the results of visual inspection of impregnation in the longitudinal
direction depending on the grooving type. In the untreated wood, the flame retardant was
impregnated only at both ends and barely penetrated the center. However, it was confirmed
with the naked eye that the flame retardant penetrated evenly to the central part according
to the additional groove processing. This shows the impregnated amount in the order of
A<B<C<D<E following the same trend as Fig. 3.

Anatomically, fire retardants penetrate softwood through tracheids aligned in the
direction of the fibers. However, due to the well-developed resin canals and the thick pits
of the tracheids, penetration beyond a certain depth is challenging. The groove processing
that was done in the present work helped evenly impregnate the wood with fire retardants
to overcome this limitation.
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Fig. 4. Visual inspection of impregnation in the longitudinal direction depending on the grooving
type

This study served as a preliminary investigation into the impact of grooving on
enhancing larch’s flame-retardant-impregnated amount. Future research will explore the
alterations in physical properties resulting from groove machining. The aim will be to
identify a groove processing technique that optimizes the impregnated amount while
minimizing changes in the physical properties of the treated wood. The goal here is to
incorporate not only new grooving processes but also a range of physical and chemical
treatment methods to enhance the permeability of wood. Previous studies have reported
that the permeability of wood can be improved through heat treatment, physical treatments
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such as ultrasound or microwave, and chemical treatments such as delignification.
Accordingly, the plan is to conduct additional studies on enhancing the impregnation of
flame retardants by applying these technologies (Jang and Kang 2022a, 2023c). Ultimately,
this study aims to improve the flame-retardant impregnation process for larch, a species
known for its low permeability.

In the future, this research will be expanded by applying the technology of
additionally coating flame retardants, such as ammonium phosphate, onto wood
impregnated with flame retardants under vacuum pressure. Furthermore, to apply this
technology industrially, it is necessary to research the economic benefits of groove
processing compared to other treatment methods for improving the flame retardancy of
wood.

CONCLUSIONS

1. The study focused on utilizing grooving pretreatment processes to enhance the flame-
retardant impregnation of Korean larch, a wood species known for its impermeable
characteristics. The flame retardant was more effectively impregnated when the
grooves were made in the cross-fiber direction rather than the longitudinal direction.

2. When groove processing was performed in both longitudinal and transverse directions
for 720 min, and groove processing was added to the surface, this resulted in the highest
flame-retardant impregnated amount. This approach yielded approximately 214.7%
improved impregnated amount compared to untreated larch.
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