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Nanofibrillated celluloses (NFCs) are of high economic value owing to their 
inherent properties, and the deployed manufacturing technology is critical 
to producing high-quality NFCs. The grinding efficiency determines the 
quality of mechanically fibrillated NFCs. Previously, a finished Taylor-flow 
grinder was developed by addressing the operating issues and drawbacks 
of a prototype grinder and, subsequently, a pilot grinder. This study 
evaluated the grinding efficiency of the Taylor-flow grinder using hardwood 
bleached kraft pulp (Hw-BKP) as a raw material, carboxymethylated with 
monochloroacetic acid and other chemicals. Afterward, two sets of 
carboxymethylated NFCs (CM-NFCs) were prepared using the finished 
Taylor-flow grinder and a commercial micro-grinder (commercial grinder) 
for comparison. To do this, the characteristics of the products obtained 
using both grinders were determined to evaluate the grinding efficiency of 
the grinder and that of the representative commercial grinder. The results 
confirmed that the CM-NFCs prepared with the grinder exhibited higher 
fiber width and lower viscosity than those prepared using the commercial 
grinder. Moreover, they were relatively uniform and transparent compared 
with those prepared with the commercial grinder. Thus, a finished Taylor-
flow grinder was developed and demonstrated for manufacturing CM-
NFCs with higher qualities from Hardwood kraft pulp.  
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INTRODUCTION 
 

Nanofibrillated celluloses (NFCs) are materials that have been rendered nano-sized 

by various mechanical treatments of cellulose fibers into fibers with widths of 1 to 100 nm 

(Khali et al. 2014; Perić et al. 2019; Marques et al. 2024). As NFCs exhibit high strength 

and elastic moduli, excellent specific surface area (SSA), dimensional and thermal 

stabilities, biodegradability, and biocompatibility, many countries, such as the United 

States, Finland, and Japan, are actively financing the exploration of technologies for 

manufacturing and utilizing these NFCs or cellulose nanofibrils (CNFs) (Lichtenstein and 

Lavoine 2017; Mohamad et al. 2017; Kono et al. 2021; Petroudy et al. 2021; Deerattrakul 

et al. 2023; Garcia et al. 2024). According to forecasts by major consulting companies, the 

global CNF market will grow annually by over 20%, growing into a $780 million market 
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in 2025 (Future Markets, Inc. 2024; Grand View Research 2024). Therefore, efficient 

NFC-manufacturing and -utilization technologies must be developed. 

NFC-manufacturing processes comprise a combination of different operations, 

which are varied to obtain various types of NFCs. As NFC fibrillation requires intensive 

mechanical treatments, cellulosic fibers are pretreated before mechanical fibrillation. 

Notably, several mechanical fibrillation methods (e.g., high-pressure homogenization, 

microfluidization, grinding, and high-intensity ultrasonication) have been employed to 

transform cellulosic fibers into nanofibrils (Khali et al. 2014; Nechyporchuk et al. 2016; 

Yi et al. 2020; Fernades et al. 2023). For example, high-pressure homogenizers are fast 

and effective continuous devices that can obtain laboratory-scale mechanical fibrillation 

results that are perfectly reproducible on an industrial scale. However, homogenization 

requires many cycles and consumes high energy (Nair and Yan 2015; Zhang et al. 2020; 

Petroudy et al. 2021; Arfelis et al. 2023). Conversely, grinding exhibits several advantages 

over other methods. For example, grinding exhibits high commercial-scale-up potential, as 

it can be used to fibrillate larger quantities of cellulose fibers than other mechanical 

methods. Moreover, grinders can fibrillate long fibers without any pretreatment and 

circumvent the clogging issue associated with mechanical fibrillation (Siro and Plackett 

2010; Nair and Yan 2015). Nevertheless, as grinding also requires numerous cycles to 

obtain uniform nanofibrils, developing a new grinding device for manufacturing NFCs 

more effectively by circumventing the numerous-cycle issue is necessary. 

 

 
 

Fig. 1. Grinding cylinder of a Taylor flow grinder developed in this study  

 

A commercial micro-grinder (commercial grinder hereinafter) fibrillates cellulosic 

fibers by a shearing force generated at the edge where two grinding stones meet. Its 

efficiency can be improved by increasing the exposure time of the cellulose fibers to the 

applied shear force when they pass through the grinder (Lahtinen et al. 2014; Petroudy et 

al. 2021; Uranchimeg et al. 2022). However, as the two stones meet at a linear point rather 

than plane one, there is a limit to which the fibrillation time can be increased. Moreover, a 

long fibrillation time corresponds to a high grinding efficiency for manufacturing NFCs 

from cellulose fibers.  

Previously, a Taylor-flow grinder was developed for NFC production (Lee et al. 

2021; Jo et al. 2022a,b; 2023). Taylor-flow arises when viscous fluid is confined in the gap 

between rotating cylinders. This type of device has become a reference in hydrodynamic 
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stability studies due to the gradual destabilizing of a flow, lending itself to a rigorous 

mathematical approach (Fenot et al. 2011). It has been found that steady laminar motion is 

possible if the motion is sufficiently slow, but that if the velocity of the fluid exceeds a 

certain limit, depending on the viscosity of the fluid and the configuration of the boundaries, 

the steady motion breaks down and eddying flow sets in (Taylor 1923). This new grinder, 

based on the Taylor flow of a pulp slurry, follows a different fiber-fibrillation mechanism 

compared with the commercial grinder. The Taylor or Taylor–Couette flow is the viscous 

fluid flow when confined in the gap between two rotating cylinders; a round bar-type 

cylinder is inserted into a pipe-type one (Davey 1962; Xu et al. 2021). Figure 1 shows a 

schematic of the grinding cylinder of a Taylor-flow grinder. The grinder cylinder was 

designed to induce the uniform and efficient fibrillation of a pulp suspension through 

Taylor flow by extending the fibrillation and retention time of the pulp slurry in the 

grinding cylinder. Detailed information on Taylor-flow grinders will be described in the 

Experimental section. 

Various versions of the grinders have been manufactured, and their performances 

have been evaluated by comparing the characteristics of the obtained NFCs (Lee et al. 2021; 

Jo et al. 2022a,b; 2023). Finally, a finished Taylor-flow grinder was developed by 

compensating the drawbacks of a prototype Taylor-flow grinder and a pilot one. In this 

study, a finished Taylor flow grinder was manufactured, and two sets of carboxymethylated 

NFCs (CM-NFCs) were prepared from bleached hardwood kraft pulp (Hw-BKP) using the 

finished Taylor-flow grinder and the commercial grinder (as a control). After that, the 

characteristics of both sets of CM-NFCs were analyzed to evaluate the grinding efficiency 

of the finished Taylor-flow grinder.  

 

 
EXPERIMENTAL 
 
Materials  

The raw material (Hw-BKP) was supplied by Moorim Paper Co., Ltd. (Jinju, 

Republic of Korea). Table 1 presents information about the chemicals used for the 

carboxymethylation of Hw-BKP, as well as the measurement of the fiber width of the NFC. 

 

Table 1. Chemicals for Hw-BKP Carboxymethylation and the Measurement of 
the Fiber Width of CM-NFCs 

Chemical Molecular formula Concentration Manufacturer 

Monochloroacetic acid (MCA) ClCH2COOH 99.0% Yakuri Pure Chemicals 

Sodium hydroxide NaOH 98.0% Samchun 

Sodium hydrogen carbonate NaOCO3 99.8% Yakuri Pure Chemicals 

Isopropanol CH3CHOHCH3 99.5% Duksan Reagents 

Ethanol  CH3CH2OH 99.9% Duksan Reagents 

Methanol CH3OH 99.9% Fisher Scientific 

n-Hexane CH3(CH2)4CH3 99.9% Fisher Scientific 

 

Methods 
Development process of the Taylor flow grinder 

Figure 2 shows three Taylor-flow-grinder versions, and Table 2 presents the 

specifications of their grinding cylinders. A Taylor-flow grinder generally comprises a 
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grinding cylinder (grinder), a mixer, a pump, and a cooler. The grinding cylinder comprises 

a rotor and a stator to induce Taylor-flow-driven uniform dispersion and fibrillation and 

increase the grinding time. The rotor and stator comprised three stages to allow for the 

electrodeposition of diamond particles on their surfaces based on the characteristics of the 

grinding materials. The stirrer was designed to control the capacity and stirring speed to 

ensure the uniform dispersion of the pulp slurry as well as its delivery to the grinding 

cylinder through the pump. Amount of heat is generated during grinding; a cooler is 

installed to lower the temperature of the grinding cylinder because a high temperature 

hinders the fibrillation of cellulose fibers in the grinding cylinder.  

The finished Taylor-flow grinder was fabricated by complementing the drawbacks 

of the previously developed prototype and, subsequently, the pilot grinder. Compared with 

the pilot and finished grinder, the inner diameters of the rotor and stator in the finished 

grinder were enlarged from 120 to 240 mm, and the gap was adjusted from 0.14 to 0.11 

mm. Additionally, the size of the electrodeposited diamond particles on the rotor and stator 

surfaces decreased from 80 to 100 mesh. Figure 3 shows the detailed structure of the 

finished grinder cylinder. The capacity of the finished grinder was increased to 9,600 mL/h, 

and a cooling device of an appropriate capacity was supplemented to control the high-heat 

generation of the grinding cylinder. A multistage centrifugal pump was applied to the 

metering pump to facilitate the high-pressure transport of the pulp slurry (a discharge 

pressure of up to 0.7 MPa was realized). 

 

Table 2. Grinding Cylinders’ Specifications of Three Versions of Taylor Flow 
Grinders 

Specifications of grinding cylinder Prototype Pilot Finished 

Diameter of stator and rotator (mm) 60 120 240 

The gap between the rotator and stator (mm) 0.14 0.14 0.11 

Grinding cylinder capacity (mL/h) 600 2,400 9,600 

Size of the diamond particle (mesh) 80 80 100 

 

 
 

Fig. 2. Pictures of the prototype, pilot, and finished Taylor-flow grinders 
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Fig. 3. Pictures of the finished Taylor flow grinder (Permission granted from Korea Technical 
Association of The Pulp and Paper Industry; Jo et al. 2023) 

 

 Carboxymethylation of bleached hardwood kraft pulp (Hw-BKP) 

Hw-BKP (solid content: 1.57% solid) was soaked in tap water and beaten to 

Canadian Standard Freeness (CSF, 450 ± 5 mL) using a laboratory Hollander beater. The 

beaten Hw-BKP fibers were dehydrated using a vacuum-filtration system so that the water 

content was 70%. After that, solvent exchange was performed three times using 500 mL 

ethanol in each case. Next, the Hw-BKP fibers were added into a mixed solution of NaOH, 

methanol (150 mL), and isopropanol (600 mL) for 30 min. The carboxymethylation 

reaction was initiated by adding MCA with continuous stirring at 65 °C for 1 h (Table 3). 

After the reaction, the Hw-BKP slurry was neutralized with 0.1 M of acetic acid to pH 7 

and subsequently washed with distilled water and filtered on a Büchner funnel. The filtered 

Hw-BKP fibers were immersed in 4% sodium hydrogen carbonate for 1 h to form the Na-

form. Afterward, the Hw-BKP slurry was washed with distilled water and filtered with the 

Büchner funnel to dilute the Hw-BKP slurry to 1% consistency for grinding. 

 
Table 3. Dosage of Chemicals Employed for Hw-BKP Carboxymethylation  

 

Degree of substitution  0.02 0.30 

Dosage of NaOH (% on o.d. fibers) 16 100 

Dosage of MCA (% on o.d. fibers) 10 100 

 

Preparation of the carboxymethylated nanofibrillated celluloses using the finished Taylor-

flow grinder and commercial grinder 

The carboxymethylated Hw-BKP (1.0% consistency) was used to prepare CM-

NFCs with the finished Taylor-flow grinder and a commercial grinder for comparison. The 

commercial grinder was used as a control device to compare the main properties of 

prepared CM-NFCs.  

The finished Taylor-flow grinder comprised a grinding cylinder, a mixer, a pump 

with flow-rate control, a flow meter, a cooler, and a double-jacketed storage tank (Fig. 4). 
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The grinder cylinder consisted of a rotor and a stator, and their surfaces were made of 

diamond particles. The carboxymethylated Hw-BKP slurry was added to the mixer and 

delivered to the grinding cylinder by a pump. The gap between the stator and rotator in the 

grinder cylinder was adjusted to 0.11 mm, and the speed of the rotator was set to 1900 rpm. 

After that, the ground Hw-BKP slurry was returned to the mixer and recirculated in the 

grinder system for a period (Table 4 presents the detailed operating conditions).  

Conversely, Super Mass Colloider (MKZA6-2, Masuko Sangyo Co., Ltd., 

Kawaguchi, Japan) was used as the commercial grinder to prepare CM-NFCs from the 

same Hw-BKP slurry. Briefly, the pulp slurry was fed continuously to the grinder 

comprising two stone grinding disks positioned on top of each other at 1,500 rpm (Fig. 5). 

The gap between the two disks was adjusted to −150 μm. Note that the negative value of 

the gap is not intended to be taken literally; rather it is inherent in the way that the device 

presents its report to the user. As the operating principles of the Taylor-flow grinder and 

commercial grinder differed, the NFC samples were collected at the same grinding time (2, 

3, and 4 h) and MCA dosage. 

 

 
 

Fig. 4. Schematic of the Taylor flow grinder (Permission granted from Korea Technical 
Association of The Pulp and Paper Industry; Jo et al. 2023) 
 
Table 4. Operating Condition of the Finished Taylor Flow Grinder for Preparing 
CM-NFCs 

Items Operating Condition 

Rotator speed (rpm) 1,900 

The gap between the rotator and stator (mm) 0.11 

Linear velocity (m/s) 23.864 

Grinding time (h) 2, 3, 4 
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Fig. 5. Operating principle of a commercial grinder 
 

Characterization of the carboxymethylated nanofibrillated cellulose 

The fiber width and low-shear viscosity of the NFCs were measured to evaluate 

their characteristics based on the grinder type, the fibrillation time, and the MCA dosage. 

The fiber width of the NFCs was analyzed by field-emission scanning electron microscopy 

(FE-SEM; JSM-7610F, JEOL, Tokyo, Japan). Thus, wet NFC pads were prepared as test 

specimens to measure the fiber width using a vacuum-filtration system. These wet NFC 

pads were dried by solvent exchange using ethyl alcohol and n-hexane to provide the dry 

test specimens (Oh et al. 2022). Afterward, the FE-SEM images of the pads were captured, 

and the fiber width was measured by image analysis using a three-dimensional image 

software (MP-45030TDI, JEOL, Osaka, Japan). The low-shear viscosity of the 1.0% NFC 

slurries was determined using a low-shear viscometer (DV-IP, Brookfield Engineering 

Laboratories, Inc., Middleborough, MA, USA) with a spindle number of 64 and a speed of 

60 rpm. The temperature of the NFC slurries was maintained at 25 °C during the viscosity 

measurement.  

To identify the electrostatic properties of the CM-NFCs, the average zeta potential 

and zeta potential distribution of the 0.01% NFC slurries were measured using a zeta 

potential analyzer (Nano ZS, Malvern Panalytical, Malvern, UK).  

 

 

RESULTS AND DISCUSSION 
 
Characteristics of the Prepared Carboxymethylated Nanofibrillated 
Celluloses 

Figures 6 and 7 show the fiber widths of CM-NFCs prepared by the Taylor-flow 

grinder and the commercial grinder. It was observed that increasing the grinding time and 

MCA dosage reduced the nanofiber width of the CM-NFCs regardless of the deployed 

grinder type. When grinding was implemented for 2 to 4 h using the Taylor-flow grinder, 

the average nanofiber width decreased from 58.4 nm (standard deviation [SD]: 8.7) to 48.1 

nm (SD: 6.3) at an MCA dosage of 10%, and the average nanofiber width decreased from 

50.1 nm (SD: 5.6) to 38.2 nm (SD: 5.1) at an MCA dosage of 100%. When grinding 

proceeded from 2 to 4 h using the commercial grinder, the average nanofiber width 

decreased from 50.4 nm (SD:11.8) to 38.9 nm (SD: 6.4) at an MCA dosage of 10%, and 

the average fiber width decreased from 42.5 nm (SD: 9.1) to 33.6 nm (SD: 6.0) when the 

MCA dosage was 100%. 
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Figures 8 and 9 show the low-shear viscosities of the CM-NFCs prepared using 

the Taylor-flow grinder and the commercial grinder, respectively. At a grinding time of 2 

to 4 h using the Taylor-flow grinder, the viscosity increased from 58.4 to 663.9 cPs at an 

MCA dose of 10%; the viscosity increased from 2,100 to 2,190 cPs at an MCA dosage of 

100%. When grinding proceeded for 2 to 4 h using the commercial grinder, the viscosity 

increased from 1,869 to 2,817 cPs at an MCA dosage of 10%, increasing from 2,350 to 

3,090 cPs at an MCA dosage of 100%. 

As the carboxymethylation reaction progressed, the electrostatic properties of 

NFCs, which are anionic, increased (they became more anionic) with the introduction of 

carboxymethyl groups to the NFC surface (Li et al. 2017; Kono et al. 2021; Aguado et al. 

2023). Figures 10 and 11 show grinding-time- and MCA-dosage-dependent zeta potentials 

of the CM-NCFs prepared with the Taylor-flow grinder and the commercial grinder, 

respectively, revealing that the zeta potentials of the CM-NFCs increased in their negative 

values regardless of the grinder type. In detail, at a grinding time of 2 to 4 h using the 

Taylor-flow grinder, the average zeta potential decreased from −19.5 mV (SD: 1.1) to 

−22.2 mV (SD: 0.8) at an MCA dosage of 10% further decreasing from −29.3 mV (SD: 

0.9) to −31.9 mV (SD: 0.5) at an MCA dosage of 100%. At the same grinding time using 

the commercial grinder, the average zeta potential decreased from −26.0 mV (SD: 1.8) to 

−27.8 mV (SD: 1.8) at an MCA dosage of 10%, further decreasing from −33.0 mV (SD: 

1.4) to −34.8 nm (SD: 1.5) at an MCA dosage of 100%. The commercial-grinder-prepared 

CM-CNFs exhibited higher anionic properties than their Taylor-flow-grinder-prepared 

counterparts at the same grinding time and MCA dosage because the SSA of CM-CNFs 

increased with the production of relatively smaller nanofibrils, which further increased the 

anionic properties of the samples (Grüneberger et al. 2014; Rahman et al. 2021). 
 

 
 

Fig. 6. Average fiber width of the CM-NFCs prepared using the Taylor-flow grinder from the 
perspectives of the grinding time and MCA dosage 
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Fig. 7. Average fiber width of the CM-NFCs prepared using the commercial grinder from the 
perspectives of the grinding time and MCA dosage 
 

 
 

Fig. 8. Low-shear viscosity of the CM-NFCs prepared using the Taylor-flow grinder from the 
perspectives of the grinding time and MCA dosage 
 

 
 

Fig. 9. Low-shear viscosity of the CM-NFCs prepared by the commercial grinder from the 
perspectives of the grinding time and MCA dosage 
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Fig. 10. Average zeta potential of the CM-NFCs prepared using the Taylor-flow grinder from the 
perspectives of the grinding time and MCA dosage 

 

 
 

Fig. 11. Average zeta potential of the CM-NFCs prepared using the commercial grinder from the 
perspectives of the grinding time and MCA dosage 
 

Figure 12 shows the picture of a ground CM-NFC suspension using the finished 

Taylor-flow grinder for 4 h at a 100% MCA dosage. The photo shows that the CM-NFC 

suspension was very transparent, indicating that it contained only nanofibrils. 

The finished Taylor-flow-grinder-prepared CM-NFCs also exhibited higher fiber 

width, lower viscosity, and less anionic zeta potential than their commercial-grinder-

prepared suspension. However, the finished Taylor-flow grinder manufactured a uniform 

suspension based on the fiber width and zeta potential results, as well as transparent CM-

NFCs. Therefore, the finished Taylor-flow grinder manufactured nano-level fibrils and 

could be deployed to produce relatively uniform CM-NFCs from Hw-BKPs. 
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Fig. 12. CM-NFC prepared using the finished Taylor-flow grinder at an MCA dosage of 100% 

 

 

CONCLUSIONS 
 

1. A finished Taylor-flow grinder comprising a grinding cylinder, mixer, pump with flow-

rate control, flow meter, and cooler was produced from an already developed prototype 

(subsequently pilot grinder) by addressing their operating issues and drawbacks. It 

exploits Taylor flow to induce uniform flow and increases the pulp-suspension 

retention time in the grinding cylinder.  

2. The Taylor-flow-grinder-prepared carboxymethylated nanofibrillated cellulose (CM-

NFC) exhibited higher fiber width, and lower viscosity than their commercial-grinder-

prepared counterparts. However, the finished Taylor-flow grinder manufactured 

relatively uniform nanofibrils, as confirmed by their fiber width and zeta potential, as 

well as the transparency of the suspension. 

3. The finished Taylor-flow grinder manufactured nanofibrils from hardwood bleached 

kraft pulp (Hw-BKP) and could produce relatively more uniform CM-NFCs than the 

commercial grinder.  
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