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Performance Evaluation of a New Taylor-Flow
Grinder in Manufacturing Carboxymethylated
Nanofibrillated Cellulose

Ji Hyun Tak,? Sung Gyu Park,? Ji Young Lee ““',>*and Ro Seong Park ¢

Nanofibrillated celluloses (NFCs) are of high economic value owing to their
inherent properties, and the deployed manufacturing technology is critical
to producing high-quality NFCs. The grinding efficiency determines the
quality of mechanically fibrillated NFCs. Previously, a finished Taylor-flow
grinder was developed by addressing the operating issues and drawbacks
of a prototype grinder and, subsequently, a pilot grinder. This study
evaluated the grinding efficiency of the Taylor-flow grinder using hardwood
bleached kraft pulp (Hw-BKP) as a raw material, carboxymethylated with
monochloroacetic acid and other chemicals. Afterward, two sets of
carboxymethylated NFCs (CM-NFCs) were prepared using the finished
Taylor-flow grinder and a commercial micro-grinder (commercial grinder)
for comparison. To do this, the characteristics of the products obtained
using both grinders were determined to evaluate the grinding efficiency of
the grinder and that of the representative commercial grinder. The results
confirmed that the CM-NFCs prepared with the grinder exhibited higher
fiber width and lower viscosity than those prepared using the commercial
grinder. Moreover, they were relatively uniform and transparent compared
with those prepared with the commercial grinder. Thus, a finished Taylor-
flow grinder was developed and demonstrated for manufacturing CM-
NFCs with higher qualities from Hardwood kraft pulp.
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INTRODUCTION

Nanofibrillated celluloses (NFCs) are materials that have been rendered nano-sized
by various mechanical treatments of cellulose fibers into fibers with widths of 1 to 100 nm
(Khali et al. 2014; Peri¢ et al. 2019; Marques et al. 2024). As NFCs exhibit high strength
and elastic moduli, excellent specific surface area (SSA), dimensional and thermal
stabilities, biodegradability, and biocompatibility, many countries, such as the United
States, Finland, and Japan, are actively financing the exploration of technologies for
manufacturing and utilizing these NFCs or cellulose nanofibrils (CNFs) (Lichtenstein and
Lavoine 2017; Mohamad et al. 2017; Kono et al. 2021; Petroudy et al. 2021; Deerattrakul
et al. 2023; Garcia et al. 2024). According to forecasts by major consulting companies, the
global CNF market will grow annually by over 20%, growing into a $780 million market

Tak et al. (2025). “Taylor flow grinder & nanocellulose,” BioResources 20(1), 438-451. 438


https://orcid.org/0000-0002-6885-5174

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu

in 2025 (Future Markets, Inc. 2024; Grand View Research 2024). Therefore, efficient
NFC-manufacturing and -utilization technologies must be developed.

NFC-manufacturing processes comprise a combination of different operations,
which are varied to obtain various types of NFCs. As NFC fibrillation requires intensive
mechanical treatments, cellulosic fibers are pretreated before mechanical fibrillation.
Notably, several mechanical fibrillation methods (e.g., high-pressure homogenization,
microfluidization, grinding, and high-intensity ultrasonication) have been employed to
transform cellulosic fibers into nanofibrils (Khali et al. 2014; Nechyporchuk et al. 2016;
Yi et al. 2020; Fernades et al. 2023). For example, high-pressure homogenizers are fast
and effective continuous devices that can obtain laboratory-scale mechanical fibrillation
results that are perfectly reproducible on an industrial scale. However, homogenization
requires many cycles and consumes high energy (Nair and Yan 2015; Zhang et al. 2020;
Petroudy et al. 2021; Arfelis et al. 2023). Conversely, grinding exhibits several advantages
over other methods. For example, grinding exhibits high commercial-scale-up potential, as
it can be used to fibrillate larger quantities of cellulose fibers than other mechanical
methods. Moreover, grinders can fibrillate long fibers without any pretreatment and
circumvent the clogging issue associated with mechanical fibrillation (Siro and Plackett
2010; Nair and Yan 2015). Nevertheless, as grinding also requires numerous cycles to
obtain uniform nanofibrils, developing a new grinding device for manufacturing NFCs
more effectively by circumventing the numerous-cycle issue is necessary.

Fig. 1. Grinding cylinder of a Taylor flow grinder developed in this study

A commercial micro-grinder (commercial grinder hereinafter) fibrillates cellulosic
fibers by a shearing force generated at the edge where two grinding stones meet. Its
efficiency can be improved by increasing the exposure time of the cellulose fibers to the
applied shear force when they pass through the grinder (Lahtinen et al. 2014; Petroudy et
al. 2021; Uranchimeg et al. 2022). However, as the two stones meet at a linear point rather
than plane one, there is a limit to which the fibrillation time can be increased. Moreover, a
long fibrillation time corresponds to a high grinding efficiency for manufacturing NFCs
from cellulose fibers.

Previously, a Taylor-flow grinder was developed for NFC production (Lee et al.
2021; Jo et al. 2022a,b; 2023). Taylor-flow arises when viscous fluid is confined in the gap
between rotating cylinders. This type of device has become a reference in hydrodynamic
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stability studies due to the gradual destabilizing of a flow, lending itself to a rigorous
mathematical approach (Fenot et al. 2011). It has been found that steady laminar motion is
possible if the motion is sufficiently slow, but that if the velocity of the fluid exceeds a
certain limit, depending on the viscosity of the fluid and the configuration of the boundaries,
the steady motion breaks down and eddying flow sets in (Taylor 1923). This new grinder,
based on the Taylor flow of a pulp slurry, follows a different fiber-fibrillation mechanism
compared with the commercial grinder. The Taylor or Taylor—Couette flow is the viscous
fluid flow when confined in the gap between two rotating cylinders; a round bar-type
cylinder is inserted into a pipe-type one (Davey 1962; Xu et al. 2021). Figure 1 shows a
schematic of the grinding cylinder of a Taylor-flow grinder. The grinder cylinder was
designed to induce the uniform and efficient fibrillation of a pulp suspension through
Taylor flow by extending the fibrillation and retention time of the pulp slurry in the
grinding cylinder. Detailed information on Taylor-flow grinders will be described in the
Experimental section.

Various versions of the grinders have been manufactured, and their performances
have been evaluated by comparing the characteristics of the obtained NFCs (Lee et al. 2021;
Jo et al. 2022a,b; 2023). Finally, a finished Taylor-flow grinder was developed by
compensating the drawbacks of a prototype Taylor-flow grinder and a pilot one. In this
study, a finished Taylor flow grinder was manufactured, and two sets of carboxymethylated
NFCs (CM-NFCs) were prepared from bleached hardwood kraft pulp (Hw-BKP) using the
finished Taylor-flow grinder and the commercial grinder (as a control). After that, the
characteristics of both sets of CM-NFCs were analyzed to evaluate the grinding efficiency
of the finished Taylor-flow grinder.

EXPERIMENTAL

Materials

The raw material (Hw-BKP) was supplied by Moorim Paper Co., Ltd. (Jinju,
Republic of Korea). Table 1 presents information about the chemicals used for the
carboxymethylation of Hw-BKP, as well as the measurement of the fiber width of the NFC.

Table 1. Chemicals for Hw-BKP Carboxymethylation and the Measurement of
the Fiber Width of CM-NFCs

Chemical Molecular formula | Concentration Manufacturer
Monochloroacetic acid (MCA) CICH2COOH 99.0% Yakuri Pure Chemicals
Sodium hydroxide NaOH 98.0% Samchun
Sodium hydrogen carbonate NaOCOs 99.8% Yakuri Pure Chemicals
Isopropanol CH3CHOHCH3 99.5% Duksan Reagents
Ethanol CH3CH20H 99.9% Duksan Reagents
Methanol CHsOH 99.9% Fisher Scientific
n-Hexane CH3(CH2)4CHj3 99.9% Fisher Scientific
Methods

Development process of the Taylor flow grinder
Figure 2 shows three Taylor-flow-grinder versions, and Table 2 presents the
specifications of their grinding cylinders. A Taylor-flow grinder generally comprises a
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grinding cylinder (grinder), a mixer, a pump, and a cooler. The grinding cylinder comprises
a rotor and a stator to induce Taylor-flow-driven uniform dispersion and fibrillation and
increase the grinding time. The rotor and stator comprised three stages to allow for the
electrodeposition of diamond particles on their surfaces based on the characteristics of the
grinding materials. The stirrer was designed to control the capacity and stirring speed to
ensure the uniform dispersion of the pulp slurry as well as its delivery to the grinding
cylinder through the pump. Amount of heat is generated during grinding; a cooler is
installed to lower the temperature of the grinding cylinder because a high temperature
hinders the fibrillation of cellulose fibers in the grinding cylinder.

The finished Taylor-flow grinder was fabricated by complementing the drawbacks
of the previously developed prototype and, subsequently, the pilot grinder. Compared with
the pilot and finished grinder, the inner diameters of the rotor and stator in the finished
grinder were enlarged from 120 to 240 mm, and the gap was adjusted from 0.14 to 0.11
mm. Additionally, the size of the electrodeposited diamond particles on the rotor and stator
surfaces decreased from 80 to 100 mesh. Figure 3 shows the detailed structure of the
finished grinder cylinder. The capacity of the finished grinder was increased to 9,600 mL/h,
and a cooling device of an appropriate capacity was supplemented to control the high-heat
generation of the grinding cylinder. A multistage centrifugal pump was applied to the
metering pump to facilitate the high-pressure transport of the pulp slurry (a discharge
pressure of up to 0.7 MPa was realized).

Table 2. Grinding Cylinders’ Specifications of Three Versions of Taylor Flow
Grinders

Specifications of grinding cylinder Prototype Pilot Finished
Diameter of stator and rotator (mm) 60 120 240
The gap between the rotator and stator (mm) 0.14 0.14 0.11
Grinding cylinder capacity (mL/h) 600 2,400 9,600
Size of the diamond particle (mesh) 80 80 100

= 1
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Pilot grinder

Prototype grinder

(BB 5 TF NanoMill_.

Fig. 2. Pictures of the prototype, pilot, and finished Taylor-flow grinders
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Fig. 3. Pictures of the finished Taylor flow grinder (Permission granted from Korea Technical
Association of The Pulp and Paper Industry; Jo et al. 2023)

Carboxymethylation of bleached hardwood kraft pulp (Hw-BKP)

Hw-BKP (solid content: 1.57% solid) was soaked in tap water and beaten to
Canadian Standard Freeness (CSF, 450 £ 5 mL) using a laboratory Hollander beater. The
beaten Hw-BKP fibers were dehydrated using a vacuum-filtration system so that the water
content was 70%. After that, solvent exchange was performed three times using 500 mL
ethanol in each case. Next, the Hw-BKP fibers were added into a mixed solution of NaOH,
methanol (150 mL), and isopropanol (600 mL) for 30 min. The carboxymethylation
reaction was initiated by adding MCA with continuous stirring at 65 °C for 1 h (Table 3).
After the reaction, the Hw-BKP slurry was neutralized with 0.1 M of acetic acid to pH 7
and subsequently washed with distilled water and filtered on a Blichner funnel. The filtered
Hw-BKP fibers were immersed in 4% sodium hydrogen carbonate for 1 h to form the Na-
form. Afterward, the Hw-BKP slurry was washed with distilled water and filtered with the
Buchner funnel to dilute the Hw-BKP slurry to 1% consistency for grinding.

Table 3. Dosage of Chemicals Employed for Hw-BKP Carboxymethylation

Degree of substitution 0.02 0.30
Dosage of NaOH (% on o.d. fibers) 16 100
Dosage of MCA (% on o.d. fibers) 10 100

Preparation of the carboxymethylated nanofibrillated celluloses using the finished Taylor-
flow grinder and commercial grinder

The carboxymethylated Hw-BKP (1.0% consistency) was used to prepare CM-
NFCs with the finished Taylor-flow grinder and a commercial grinder for comparison. The
commercial grinder was used as a control device to compare the main properties of
prepared CM-NFCs.

The finished Taylor-flow grinder comprised a grinding cylinder, a mixer, a pump
with flow-rate control, a flow meter, a cooler, and a double-jacketed storage tank (Fig. 4).
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The grinder cylinder consisted of a rotor and a stator, and their surfaces were made of
diamond particles. The carboxymethylated Hw-BKP slurry was added to the mixer and
delivered to the grinding cylinder by a pump. The gap between the stator and rotator in the
grinder cylinder was adjusted to 0.11 mm, and the speed of the rotator was set to 1900 rpm.
After that, the ground Hw-BKP slurry was returned to the mixer and recirculated in the
grinder system for a period (Table 4 presents the detailed operating conditions).

Conversely, Super Mass Colloider (MKZAG6-2, Masuko Sangyo Co., Ltd.,
Kawaguchi, Japan) was used as the commercial grinder to prepare CM-NFCs from the
same Hw-BKP slurry. Briefly, the pulp slurry was fed continuously to the grinder
comprising two stone grinding disks positioned on top of each other at 1,500 rpm (Fig. 5).
The gap between the two disks was adjusted to —150 um. Note that the negative value of
the gap is not intended to be taken literally; rather it is inherent in the way that the device
presents its report to the user. As the operating principles of the Taylor-flow grinder and
commercial grinder differed, the NFC samples were collected at the same grinding time (2,
3, and 4 h) and MCA dosage.
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Fig. 4. Schematic of the Taylor flow grinder (Permission granted from Korea Technical
Association of The Pulp and Paper Industry; Jo et al. 2023)

Table 4. Operating Condition of the Finished Taylor Flow Grinder for Preparing
CM-NFCs

ltems Operating Condition
Rotator speed (rpm) 1,900
The gap between the rotator and stator (mm) 0.11
Linear velocity (m/s) 23.864
Grinding time (h) 2,3,4
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Fig. 5. Operating principle of a commercial grinder

Characterization of the carboxymethylated nanofibrillated cellulose

The fiber width and low-shear viscosity of the NFCs were measured to evaluate
their characteristics based on the grinder type, the fibrillation time, and the MCA dosage.
The fiber width of the NFCs was analyzed by field-emission scanning electron microscopy
(FE-SEM; JSM-7610F, JEOL, Tokyo, Japan). Thus, wet NFC pads were prepared as test
specimens to measure the fiber width using a vacuum-filtration system. These wet NFC
pads were dried by solvent exchange using ethyl alcohol and n-hexane to provide the dry
test specimens (Oh et al. 2022). Afterward, the FE-SEM images of the pads were captured,
and the fiber width was measured by image analysis using a three-dimensional image
software (MP-45030TDI, JEOL, Osaka, Japan). The low-shear viscosity of the 1.0% NFC
slurries was determined using a low-shear viscometer (DV-IP, Brookfield Engineering
Laboratories, Inc., Middleborough, MA, USA) with a spindle number of 64 and a speed of
60 rpm. The temperature of the NFC slurries was maintained at 25 °C during the viscosity
measurement.

To identify the electrostatic properties of the CM-NFCs, the average zeta potential
and zeta potential distribution of the 0.01% NFC slurries were measured using a zeta
potential analyzer (Nano ZS, Malvern Panalytical, Malvern, UK).

RESULTS AND DISCUSSION

Characteristics of the Prepared Carboxymethylated Nanofibrillated
Celluloses

Figures 6 and 7 show the fiber widths of CM-NFCs prepared by the Taylor-flow
grinder and the commercial grinder. It was observed that increasing the grinding time and
MCA dosage reduced the nanofiber width of the CM-NFCs regardless of the deployed
grinder type. When grinding was implemented for 2 to 4 h using the Taylor-flow grinder,
the average nanofiber width decreased from 58.4 nm (standard deviation [SD]: 8.7) to 48.1
nm (SD: 6.3) at an MCA dosage of 10%, and the average nanofiber width decreased from
50.1 nm (SD: 5.6) to 38.2 nm (SD: 5.1) at an MCA dosage of 100%. When grinding
proceeded from 2 to 4 h using the commercial grinder, the average nanofiber width
decreased from 50.4 nm (SD:11.8) to 38.9 nm (SD: 6.4) at an MCA dosage of 10%, and
the average fiber width decreased from 42.5 nm (SD: 9.1) to 33.6 nm (SD: 6.0) when the
MCA dosage was 100%.
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Figures 8 and 9 show the low-shear viscosities of the CM-NFCs prepared using
the Taylor-flow grinder and the commercial grinder, respectively. At a grinding time of 2
to 4 h using the Taylor-flow grinder, the viscosity increased from 58.4 to 663.9 cPs at an
MCA dose of 10%; the viscosity increased from 2,100 to 2,190 cPs at an MCA dosage of
100%. When grinding proceeded for 2 to 4 h using the commercial grinder, the viscosity
increased from 1,869 to 2,817 cPs at an MCA dosage of 10%, increasing from 2,350 to
3,090 cPs at an MCA dosage of 100%.

As the carboxymethylation reaction progressed, the electrostatic properties of
NFCs, which are anionic, increased (they became more anionic) with the introduction of
carboxymethyl groups to the NFC surface (Li et al. 2017; Kono et al. 2021; Aguado et al.
2023). Figures 10 and 11 show grinding-time- and MCA-dosage-dependent zeta potentials
of the CM-NCFs prepared with the Taylor-flow grinder and the commercial grinder,
respectively, revealing that the zeta potentials of the CM-NFCs increased in their negative
values regardless of the grinder type. In detail, at a grinding time of 2 to 4 h using the
Taylor-flow grinder, the average zeta potential decreased from —19.5 mV (SD: 1.1) to
—22.2 mV (SD: 0.8) at an MCA dosage of 10% further decreasing from —29.3 mV (SD:
0.9) to =31.9 mV (SD: 0.5) at an MCA dosage of 100%. At the same grinding time using
the commercial grinder, the average zeta potential decreased from —26.0 mV (SD: 1.8) to
—27.8 mV (SD: 1.8) at an MCA dosage of 10%, further decreasing from —33.0 mV (SD:
1.4) to —34.8 nm (SD: 1.5) at an MCA dosage of 100%. The commercial-grinder-prepared
CM-CNFs exhibited higher anionic properties than their Taylor-flow-grinder-prepared
counterparts at the same grinding time and MCA dosage because the SSA of CM-CNFs
increased with the production of relatively smaller nanofibrils, which further increased the
anionic properties of the samples (Griineberger et al. 2014; Rahman et al. 2021).
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Fig. 6. Average fiber width of the CM-NFCs prepared using the Taylor-flow grinder from the
perspectives of the grinding time and MCA dosage
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Fig. 7. Average fiber width of the CM-NFCs prepared using the commercial grinder from the
perspectives of the grinding time and MCA dosage
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Fig. 8. Low-shear viscosity of the CM-NFCs prepared using the Taylor-flow grinder from the
perspectives of the grinding time and MCA dosage
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Fig. 9. Low-shear viscosity of the CM-NFCs prepared by the commercial grinder from the
perspectives of the grinding time and MCA dosage
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Fig. 10. Average zeta potential of the CM-NFCs prepared using the Taylor-flow grinder from the
perspectives of the grinding time and MCA dosage
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Fig. 11. Average zeta potential of the CM-NFCs prepared using the commercial grinder from the
perspectives of the grinding time and MCA dosage

Figure 12 shows the picture of a ground CM-NFC suspension using the finished
Taylor-flow grinder for 4 h at a 100% MCA dosage. The photo shows that the CM-NFC
suspension was very transparent, indicating that it contained only nanofibrils.

The finished Taylor-flow-grinder-prepared CM-NFCs also exhibited higher fiber
width, lower viscosity, and less anionic zeta potential than their commercial-grinder-
prepared suspension. However, the finished Taylor-flow grinder manufactured a uniform
suspension based on the fiber width and zeta potential results, as well as transparent CM-
NFCs. Therefore, the finished Taylor-flow grinder manufactured nano-level fibrils and
could be deployed to produce relatively uniform CM-NFCs from Hw-BKPs.
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Fig. 12. CM-NFC prepared using the finished Taylor-flow grinder at an MCA dosage of 100%

CONCLUSIONS

1. Afinished Taylor-flow grinder comprising a grinding cylinder, mixer, pump with flow-
rate control, flow meter, and cooler was produced from an already developed prototype
(subsequently pilot grinder) by addressing their operating issues and drawbacks. It
exploits Taylor flow to induce uniform flow and increases the pulp-suspension
retention time in the grinding cylinder.

2. The Taylor-flow-grinder-prepared carboxymethylated nanofibrillated cellulose (CM-
NFC) exhibited higher fiber width, and lower viscosity than their commercial-grinder-
prepared counterparts. However, the finished Taylor-flow grinder manufactured
relatively uniform nanofibrils, as confirmed by their fiber width and zeta potential, as
well as the transparency of the suspension.

3. The finished Taylor-flow grinder manufactured nanofibrils from hardwood bleached
kraft pulp (Hw-BKP) and could produce relatively more uniform CM-NFCs than the
commercial grinder.
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