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The effects of nano-sized carbon black (CB), ammonium polyphosphate 
(APP), and microcrystalline cellulose (MCC) were tested relative to the 
mechanical and thermal properties of polypropylene (PP)-based 
composites. Composites were produced by injection molding in nine 
different combinations by adding materials at the levels of 0% or 10% 
MCC, 0% or 15% APP, and 0% to 7% CB. With the use of APP, there was 
a decrease in tensile and flexural strength, while there was an increase in 
impact resistance. Compared to the control group, it was determined that 
with the use of CB and MCC, there was an increase in tensile modulus, 
flexural strength, flexural modulus, and impact strength, while there was a 
decrease in tensile strength and elongation at break values. The flexural 
strength and flexural modulus values of all PP composites were higher than 
the standard values for polyolefin-based plastic lumber decking boards. A 
decrease in the initial degradation temperature occurred with the addition 
of MCC. As the CB usage was increased and MCC was added, the amount 
of charred residue increased. Additionally, the use of CB and the addition 
of MCC increased the maximum and final degradation temperatures 
compared to the control sample. Considering the results obtained, it was 
concluded that the use of CB and MCC generally improved the mechanical 
and thermal properties of PP composites. 
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INTRODUCTION 
 

Natural fibers made of cellulosic materials offer numerous benefits, including 

improved physico-mechanical qualities, low density, biodegradability, renewability, and 

ease of availability. In polymer matrices, their potential as reinforcing fillers is significant 

because of the growing environmental issues worldwide (Merkel et al. 2014; Peng et al. 

2014; Santos et al. 2015: Berthet et al. 2016). Lately, cellulose-based composites have 

found application in the automotive, building, and packaging industries, as well as 

dielectric materials for microchips, switches, connections, circuit board components, and 

transformer parts (Wagberg and Annergren 1997; Yang and Gardner 2011; Jayamani et al. 

2015; Cavdar and Boran 2016). When compared to glass or aramid fibers, the addition of 

various cellulosic natural fibers from kenaf, sugarcane bagasse, palm fiber, banana fiber, 

jute, coir, linen, sawdust, hemp, or tea mill waste, cotton, recycled corrugated paper board, 

etc., have several benefits (Cavdar et al. 2011; Zulkifli et al. 2015; Boccarusso et al. 2016; 

Kili et al. 2023, 2024). In recent years, cellulose, a naturally occurring biopolymer, has 
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been employed in place of inorganic fillers. Processing with acid hydrolysis eliminates the 

amorphous areas from the cellulose chain (Haafız et al. 2013; Rosa and Lenz 2013; Zulkifli 

et al. 2015).  

When cellulose chains are hydrolyzed in an acidic solution, microcrystalline 

cellulose (MCC) is produced. This material has improved mechanical qualities, a large 

surface area, and increased thermal stability (Hoyos et al. 2013; Ifuku and Yano 2015). 

The MCC has some disadvantages despite these numerous benefits, such as it degrades 

thermally beyond 250 °C and is incompatible with hydrophobic polymer matrices (Hassan 

et al. 2014; Ifuku and Yano 2015). The characteristics of natural fiber composites are 

negatively impacted by the poor compatibility of cellulose with the polymer matrix (Peng 

et al. 2014; Boccarusso et al. 2016). Through altering the surface of cellulosic fibers and 

utilizing coupling agents and carrier systems in cellulose-based composites, this 

detrimental effect can be mitigated (Peng et al. 2014; Ifuku and Yano 2015; Boccarusso et 

al. 2016; Boran et al. 2016).  

Each filler and additive added to the polymer matrix changes the mechanical 

properties of the composite material. Polymer composites are expected to meet certain 

mechanical standard values. According to the ASTM D6662 standard (Standard 

Specification for Polyolefin-based Plastic Lumber Decking Boards), the minimum flexural 

strength should be 6.9 MPa and the minimum flexural modulus should be 340 MPa. 

One of the most significant polymer materials, polypropylene (PP), has many uses 

in furniture, cables, building materials, packaging, and interior design due to its low 

density, low toxicity, superior mechanical performance, and advantageous processing 

qualities (Zhang et al. 2017; Liang 2019; Xu et al. 2019). However, because of its entire 

aliphatic hydrocarbon structure, PP is combustible and burns quickly without leaving any 

residue, which frequently poses a serious risk to people's safety and limits the applications 

of this material in terms of safety (Peng et al. 2008; Subasinghe et al. 2018). As a result, 

the need to create flame-retarded polypropylene composites has grown. 

Flame retardant additives, such as those based on phosphorus, have been included 

in polymer matrices to improve their thermal stability and charring, delay the burning rate, 

and reduce smoke and heat emission (Lu and Hamerton 2002; Schmitt 2007; Bolgar et al. 

2008; Veen and Boer 2012; Attia et al. 2014; Duan et al. 2016; Lim et al. 2016). 

Ammonium phosphate (APP) may be utilized with a variety of polymer types and is not 

harmful to health when compared to other phosphorus-based additives (Boccarusso et al. 

2016). When compared to other halogen flame retardants, APP, a halogen-free flame 

retardant, does not emit more smoke (Schmitt 2007; Veen and Boer 2012; Lim et al. 2016). 

Environmentally friendly flame retardants may be easily included to create flame-

retarded polymeric materials. Intrinsic flame retardants (IFRs) are a form of halogen-free 

flame retardant that have garnered a lot of attention due to their favorable characteristics 

including low toxicity, low smoke, and low corrosion (Sun et al. 2017; Li et al. 2018; Yin 

et al. 2018; Liu et al. 2019). IFR systems typically consist of three components: an acid 

supply, which acts as a catalyst for the development of char, a carbon source, which forms 

char, and a gas source, which creates foam. Their active groups respond by crosslinking 

and then carbonizing when the material is heated over a specific temperature or exposed to 

fire. This produces a foamed carbon layer that shields the underlying material from heat 

and flame. For example, ammonium polyphosphate (APP), pentaerythritol (PER), and 

melamine (ME) are used in a typical IFR system (Camino et al. 1989). Because of its 

unique molecular makeup, APP is sometimes seen as both an acid source and a gas source 

at the same time. However, because PER is a polyhydric short molecule compound, it has 
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several drawbacks (poor heat stability, moisture sensitivity, rapid migration to material 

surfaces, etc.), which frequently lead to a decline in mechanical performance and a 

reduction in flame retardancy effectiveness (Tian et al. 2013). Great effort has been made 

to create new charring agents to replace PER to solve this issue (Hu et al. 2004; Li and Xu 

2006; Peng et al. 2008).  

It has been shown that fabricating polymer/nanofiller composites has become an 

effective way to increase their thermal and flame retardancy because of the advancement 

of nanotechnology (Feng et al. 2017; Song et al. 2017). Several materials have 

demonstrated strong flame-retardant effects, including clay (Zhang et al. 2006), carbon 

nanotubes (CNTs) (Kashiwagi et al. 2004; Song et al. 2013a), fullerene (C60) (Song et al. 

2008, 2011a, 2013b), graphene (Song et al. 2011b; Fang et al. 2019), and layered double 

hydroxide (LDH) (Li et al. 2018a; Li et al. 2018b), etc.  

One of the most popular carbon nanomaterials is carbon black (CB). Carbon black 

has permanent conductivity, strong thermal stability, and is abundant. In previous studies, 

CB, as a nanoscale flame retardant, has been incorporated into pure PP, PP/CNT, and 

PP/carbon fiber (CF) systems with improvement in thermal stability, flame retardancy and 

electrical properties. In such studies, CB was found to play an important role in trapping 

radicals and forming a network in PP composites (Yang et al. 2015; Wen et al. 2012). 

There has been no sufficient study on the effect of CB on cellulosic material-filled 

PP composites. The present study utilized CB not only as a nanoscale synergist, but also 

as a carbon source in the IFR system. This study aimed to investigate the synergistic effect 

of the combination of CB, MCC, and APP on the mechanical and thermal stability of PP 

based composite material. 

  

 
EXPERIMENTAL 
 

Materials 
Microcrystalline cellulose (MCC) as filler and polypropylene (PP) as a polymeric 

matrix were used in composite production. In addition, maleic anhydride-grafted 

polypropylene (MAPP) (Licomont AR 504 by Clariant) as a coupling agent was used. 

Polypropylene (product code: EH102) (density = 0.905 g/cm3, melt flow index at 230 

°C/2.16 kg = 11 g/10 min) was supplied by Petkim Petrochemical Company in Turkey. 

The melting point, tensile strength in yield, flexural modulus at 23 °C, Izod impact strength 

at 23 °C (notched), and Rockwell hardness of the polypropylene (PP) were (DSC) 163 °C, 

35 MPa, 1450 MPa, 20 J/m, and 96 R-scale, respectively. The size distribution of MCC 

supplied by Merck KGaA (Germany) is given in Table 1. The APP (Exolit AP 435) used 

as fire retardant was supplied by Ataman Chemicals. Carbon black (30 nm size) was 

supplied by the Nanografi company (Ankara, Türkiye). 

 

Table 1. Size Distribution of Microcrystalline Cellulose (MCC) 

Size Distribution Rate 

Sieve analysis (˂ 20 μm) ≤ 20% 

Sieve analysis (˃ 160 μm) ≤ 2% 

Sieve analysis (20 to 160 μm) ≥ 80% 
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Methods 
Injection molded polymer composite manufacturing 

Composites were manufactured in 9 different combinations using injection molding 

methods. The combination of composites produced is given in Table 2.  

The materials PP, CB, MAPP, and MCC or without MCC were mixed at 60 rpm, 

for 2 min. To create a homogenous blend, PP, CB, MCC, and MAPP were dry-mixed in a 

high-intensity mixer according to the provided formulation. Subsequently, these mixtures 

were combined in a single screw extruder on a laboratory scale, operating at a screw speed 

of 40 rpm and a temperature range of 200, 195, 190, 185, and180 °C between the feed and 

die zones. Samples that had been extruded were cooled in a pool of water before being 

ground into pellets. Prior to injection molding, the pellets were oven-dried to an oven-dry 

weight of 103 °C (± 2). To create standard test samples, dried pellets were injected into the 

HDX-88 injection molding machine (temperatures: 180,190, and 200 °C from the feed 

zone to the die zone; pressure: 102 kg/cm2; injection speed: 80 mm/s; screw speed: 40 

rpm). After waiting for 35 seconds for the material to cool and solidify in the injection 

mold, the test samples were removed from the mold. The samples were conditioned in a 

climate chamber with a temperature of 20 °C and 65% relative humidity before testing. 

 

Table 2. Material Combination of Composite Samples Produced 

Samples PPa MCCa APPa CBa MAPPa 
PP (control) 97 - - - 3 

0CB 82 - 15 0 3 

3CB 79 - 15 3 3 

5CB 77 - 15 5 3 

7CB 75 - 15 7 3 

0CB/MCC 72 10 15 0 3 

3CB/MCC 69 10 15 3 3 

5CB/MCC 67 10 15 5 3 

7CB/MCC 65 10 15 7 3 

a: Values are in percentage by weight (wt%); PP: polypropylene; MCC: microcrystalline cellulose; 
APP: ammonium polyphosphate; CB: carbon black; MAPP: polypropylene grafted maleic 
anhydride 

 

Determination of Mechanical Properties 
Test samples’ tensile, flexural, and impact strength values were ascertained in 

accordance with ASTM D 256 (2010), ASTM D 790 (2010), and ASTM D 638 (2010) (5.0 

mm/min), respectively. Tensile and flexural properties were tested using a Zwick/Roell 

model Z010 universal mechanical testing machine, which has a 10 kN load capacity. 

Impact testing was conducted using a Zwick HIT 5.5P testing machine. 

 
Determination of Thermal Properties 

Through thermogravimetric analysis, the impact of CB and MCC on thermal 

stability—the material's capacity to withstand changes in physical structure, chemical 

irreversibility, or polymer chains at elevated temperatures—as well as other thermal 

parameters of PP composites were investigated. The samples were performed in a 

Shimadzu TGA-50 thermal analyzer, which ran on nitrogen at a flow rate of 20 mL/min 

and a heating rate of 10 °C/min. For the analysis, 10 mg of powdered test samples were 

utilized. The samples were heated to 800 °C from room temperature. 
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Statistical Analysis 
The software IBM SPSS (Statistical Package for Social Sciences) version 21.0 was 

used to conduct statistical analysis. To identify the homogeneity groups of the composites, 

the Duncan’s mean separation test and the analysis of variance test (ANOVA) were 

selected with a significant level (p < 0.001). 

 

 

RESULTS AND DISCUSSION 
 

The mechanical properties of CB-, APP-, and MCC-filled PP composites are given 

in Table 3. Additionally, Table 3 demonstrates homogeneity (p < 0.001) among the 

composites’ groups. 

 

Table 3. Mechanical Properties of Manufactured Composites 

Samples TS (MPa) TM (MPa) EaB (%) FS (MPa) FM (MPa) IS (kJ/m2) 

PP 
(Control) 

*26.48e**  
(0.46)*** 

522.60a  
(42.06) 

450f  
(0.1) 

36.95bc 
 (0.95) 

1047.77a  
(34.67) 

2.61a  
(0.07) 

0CB 23.88a  
(0.97) 

636.22b 
 (44.44) 

450f  
(0.1) 

36.13ab  
(0.79) 

1146.61b  
(20.19) 

3.43c  
(0.62) 

3CB 25.64d  
(0.66) 

719.07cd 
 (72.11) 

8.33de  
(0.96) 

39.56e  
(0.44) 

1263.53c  
(19.49) 

3.12bc  
(0.37) 

5CB 24.36abc 
 (0.43) 

698.24bc 
 (48.38) 

7.40cd  
(0.68) 

39.44e  
(0.82) 

1268.84c  
(26.25) 

2.88ab  
(0.11) 

7CB 23.93ab  
(0.44) 

717.85cd  
(59.96) 

7.06bc  
(0.75) 

38.42d  
(0.66) 

1252.69c  
(41.85) 

2.86ab  
(0.08) 

0CB/MCC 23.82a  
(0.37) 

690.95bc  
(37.73) 

8.78e  
(1.93) 

35.85a  
(0.92) 

1212.56bc  
(35.83) 

3.08bc  
(0.34) 

3CB/MCC 24.65bc  
(0.30) 

775.14de  
(24.64) 

6.20ab  
(0.50) 

37.29c  
(0.64) 

1282.25c  
(79.29) 

3.06bc  
(0.07) 

5CB/MCC 24.69c  
(0.35) 

827.42e  
(30.94) 

5.90ab  
(0.82) 

37.88cd  
(0.47) 

1284.47c  
(11.66) 

3.05bc  
(0.15) 

7CB/MCC 24.64bc  
(0.45) 

903.60f  
(54.67) 

5.25a  
(0.50) 

40.02e  
(1.01) 

1510.45d  
(120.50) 

2.98ab  
(0.10) 

TS: Tensile strength, TM: Tensile modulus, EaB: Elongation at break, FS: Flexural strength, FM: 
Flexural modulus, IS: Impact strength, * Values indicate mean, **The letters indicate homogeneity 
groups, *** Values in parentheses indicate standard deviation 

 

It was determined that the use of MCC and CB significantly affected tensile 

strength. Figure 1 shows the tensile strength (TS), tensile modulus (TM), and elongation at 

break (EaB) graphs of composite samples. With the addition of APP to PP, a decrease in 

TS occurred. In samples without MCC filling, an increase in TS value was observed with 

the use of 3% CB compared to samples with 0% CB, and a decrease in the TS value was 

observed as the CB ratio was increased. It was determined that there was an increase in the 

TS value of the samples with the addition of 3% and 5% CB in the samples with MCC. 

Many flame-retardant fillers have the unfavorable effect of surface-treating the particles to 

enhance chemical interaction with the polymer matrix, which can reduce the mechanical 

qualities of polymers (Mouritz and Gibson 2006). Consequently, the TS of composites is 

influenced by the filler's dispersion in the polymer matrix or the interfacial adhesion 
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between the filler and the matrix (Ramazani et al. 2008). According to literature, adding a 

coupling agent in addition to flame-retardants enhanced the interfacial adhesion between 

the filler and the matrix, preventing a significant loss of strength (Cavdar et al. 2016). In 

tensile tests and bending tests, strength is applied to the material in different directions. In 

the tensile test, force is applied parallel to the material surface, while in the bending test, 

force is applied perpendicular to the material surface. In the tensile test, the entire material 

is subjected to tensile stress. In the bending test, the upper surface of the material is exposed 

to compressive force while the lower surface is exposed to tensile stress. For this reason, 

some of the mechanical properties of the material decrease while others increase. The 

addition of CB with MCC increased the TM of the polymer composites (up to 73%). The 

composites became more rigid when MCC (10 wt%) was added as a filler to the polymer 

matrix (Kiziltas et al. 2013; Boran 2016; Trache et al. 2016). In comparison to the control 

PP, this resulted in a decrease in EaB values and an increase in TM for the composites. 

 

   

  
 

Fig. 1. Tensile strength (a), tensile modulus (b), and elongation at break (c) graph of composite 
samples 
 

Statistically, the use of MCC and CB had a significant effect on flexural strength 

(FS). Figure 2 shows the FS, flexural modulus (FM), and impact strength (IS) graphs of 

composite samples. According to test results, the highest FS value was found in the 

7CB/MCC group (40.01 MPa), and the lowest FS value was found in the 0CB/MCC group 

(35.85 MPa). Adding CB and MCC to the production increased the FS value compared to 

the control group. Additionally, it was determined that the FS increased as the CB ratio 

increased in samples with MCC. Researchers have stated that the crystalline nature and 

short microfibrils of MCC have improved most of the mechanical properties of polymer 

composites (Wunderlich 1990; Mouritz and Gibson 2006; Fonseca-Valero et al. 2015; 

Boran et al. 2016). It was determined that the use of MCC and CB had a statistically 
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significant effect on FM values. The FM of the composites improved up to 44% with 

addition of MCC and CB. The highest TM and FM were obtained especially in the samples 

with MCC additive and 7% CB use. 

The use of MCC and CB had a significant effect on impact strength. The highest IS 

value was found in the 0CB group, while the lowest IS value was found in the PP group. 

Impact strength, which is strongly correlated with toughness, is a measurement of a 

material’s capacity to withstand breaking when stressed at a rapid rate (Panthapulakkal and 

Sain 2007). Impact strength has increased with the use of CB and MCC in PP composite 

production. According to the Duncan test, IS values of MCC groups were found to be 

similar. 

 

  

 
 

Fig. 2. Flexural strength (a), flexural modulus (b), and impact strength (c) graph of composite 
samples 

 

Thermogravimetric analysis (TGA), which measures the sample’s weight loss in 

response to temperature, gives precise information about the thermal characteristics and 

decomposition mechanism of the sample. Figure 3 displays the experimental TGA and 

DTG curves of CB- and MCC-filled PP composites under a nitrogen atmosphere. Table 4 

provides a summary of the findings. The initial (Tin), maximum rate weight loss (Tmax), and 

final (Tend) decomposition temperatures of the control PP composite were 434.7, 463.8, and 

480.3 °C, respectively. Figure 3a and Table 4 show that at 800 °C and in N2 atmosphere, 

the thermal degradation of the control PP composite resulted in just 1.1 wt% char residue. 

Compared to the PP composite, CB- and MCC-filled composites were found to have 

similar thermal behavior but a lower weight loss percentage. With the increase in CB usage 

rate, an increase occurred in the initial (Tin) and maximum weight loss (Tmax) temperatures 

of the material. Similar results have been reported in the literature (Yang et al. 2019). An 

increase in the amount of residue was observed with the increase in the CB ratio and the 
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use of MCC in the samples. When MCC-filled composites were exposed to a nitrogen 

environment, two stages of thermal degradation were evident (Fig. 3b). The first part of 

weight loss in the TGA curve of MCC -filled composites represented the decomposition of 

microcrystalline cellulose, corresponding to the temperature range of 289 to 320 °C. Char 

residue increased from 15.5% to 16.6%, 16.8%, and 18.7% at 800 °C, respectively, in the 

0CB-MCC, 3CB-MCC, 5CB-MCC, and 7CB-MCC samples, indicating more char residue 

and a more compact char layer are formed under pyrolysis conditions (Cavdar et al. 2019). 

 

Table 4. TGA and DTG Data of CB and MCC Filled PP Composites Under 
Nitrogen Atmosphere 

Sample Tin (°C) Tmax (°C) Tend (°C) Char at 800 °C (wt%) 
PP 434.7 463.8 480.3 1.1 

0CB 439.9 471.8 486.6 14.5 
3CB 454.4 478.6 493.4 14.9 
5CB 464.2 484.2 495.9 16.7 
7CB 461.4 482.4 493.9 16.1 

0CB-MCC 311.1 479.5 494.0 15.5 
3CB-MCC 314.6 483.6 497.7 16.6 
5CB-MCC 314.4 490.0 501.9 16.8 
7CB-MCC 289.5 492.0 502.8 18.7 

Tin: The initial degradation temperature; Tmax: Maximum rate of weight loss temperature; Tend: The 
final degradation temperature 

 

  

  
 

Fig. 3 (a, b) TGA and (c, d) derivation thermogram (DTG) curves of PP composites under 
nitrogen atmosphere  
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CONCLUSIONS 
 

1. With the addition of carbon black (CB) and microcrystalline cellulose (MCC) to 

poly(propylene) (PP)-based composite materials, a decrease in tensile strength (TS) 

and elongation at break (EaB) values occurred, while an increase in tensile modulus 

(TM), flexural modulus (FM), flexural strength (FS), and impact strength (IS) were 

observed. 

2. The ammonium polyphosphate (APP) addition in production caused a decrease in TS 

and FS. 

3. The ASTM D6662 standard (2001) requires that plastic lumber decking boards based 

on polyolefins must have a minimum FS of 6.9 MPa and an FM of 340 MPa. The FS 

and FM values of PP composites were found to exceed these standards. 

4. Both CB- and MCC-filled composites had higher thermal stability compared to control 

PP. According to TGA results, an increase in the maximum amount of char residue was 

observed with the use of CB and MCC in the composite material. 

5. The initial degradation temperature decreased with the addition of MCC. An increase 

in Tmax and Tend occurred with the increase in CB usage rate and the addition of MCC. 
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