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Saw wood cracks are defects that affect the appearance and mechanical 
strength of sawn wood. Crack defects in the surface of sawn wood can be 
readily detected. Decisions regarding the presence and severity of such 
defects can affect the utilization rate of sawn timber. Due to the heavy 
workload, low efficiency, and low accuracy of manual inspection, 
traditional machine learning methods have strong specialization, complex 
methods, and high costs. By studying the semantic segmentation model 
of surface crack defects in sawn timber based on deep learning, the 
optimal model for segmentation and detection of surface cracks in sawn 
timber was established. The improved Attention U-Net model encoding 
stage was introduced into CBAM, and AdamW optimization was used 
instead of SGD and Adam to achieve better crack semantic segmentation 
results. The ECA module was introduced in the skip connection part, and 
the weighted fusion multi loss function was used instead of the original 
cross entropy loss function. The positions of the two modules were 
replaced to improve the accuracy of semantic segmentation of surface 
cracks in sawn timber. Through comparative experiments, the improved 
model also achieved higher scores in semantic segmentation indicators 
for surface cracks in sawn timber compared to other models. 
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INTRODUCTION 
 

In the face of the imbalance between supply and demand, where there is a 

substantial demand for sawn timber yet a shortage of sawn timber resources, it is necessary 

to classify and use sawn timber in order to fully and efficiently utilize the limited sawn 

timber. The surface of sawn timber may have defects such as knots, decay, and cracks, 

which are also the key to grading sawn timber. Among these defects, surface cracks are 

serious imperfections. They impact the appearance quality and mechanical strength of 

sawn timber and are also a major criterion for grading. The accuracy of surface crack 

detection in sawn timber poses a challenge due to its susceptibility to interference from 

texture and other defects. By accurately detecting surface cracks in sawn timber, there is 

potential to better understand the properties of sawn timber and make rational use of it. At 

the same time, it provides a basis for subsequent processing to ensure the quality and 
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appearance of sawn timber. According to the current research status of defects such as 

wood cracks, there are still problems in the detection of surface cracks in wood. 

In traditional wood crack defect detection algorithms, an excessive dependence on 

equipment detection accuracy gives rise to high complexity and low efficiency in 

processing wood crack defect data. Although the focus of subsequent defect detection is 

shifting towards machine learning, the task of wood defect detection is still complex, 

requiring wood crack image segmentation, feature extraction, classifier classification and 

recognition, as well as a significant investment in labor costs. In the application of deep 

learning algorithms for detecting wood cracks and other defects, in contrast to traditional 

machine learning based detection methods, the steps of wood crack segmentation and 

feature extraction are reduced. Once the dataset is established, it can be input into the 

network for training, and the deep neural network automatically completes the feature 

extraction and other tasks, ultimately generating the recognition and segmentation of wood 

defect images. However, while object detection algorithms are more prevalently employed 

in detecting defects such as wood cracks, semantic segmentation algorithms for such 

defects are relatively scarce. Even with the use of semantic segmentation algorithms, there 

is still some distance to go in the subsequent classification of wood. Cracks cannot be 

separated due to similarity in background color, similarity in wood texture to cracks, and 

segmentation errors in both cracks and some joints. 

This article addresses the issues raised above by using a deep learning model based 

on an improved U-Net to perform semantic segmentation of surface cracks in sawn timber. 

Then, a classification system for detecting and grading surface cracks in sawn timber is 

established to achieve the classification of surface cracks in sawn timber. For semantic 

segmentation of surface crack images in sawn timber, the U-Net deep learning model is 

mainly used. Based on this, the network framework is improved, and the main research 

focuses on adding Convolutional Block Attention Module (CBAM), Attention Gate (AG), 

and Efficient Channel Attention (ECA) modules to exchange the positions of each module, 

optimize the loss function, and adjust the parameters of the network model to obtain the 

best sawn timber surface crack semantic segmentation model. The goal is to apply the 

improved U-Net model for optimal surface cracking of sawn timber to sawn timber grading 

to improve the accuracy of detection. 

 
Related Work 

In the domain of wood surface defect image segmentation, traditional image 

segmentation approaches mainly encompass segmentation methods based on thresholding, 

region, edge detection, clustering, graph theory, and specific theories. Currently, the more 

prevalent methods are those of deep learning. Among them, semantic segmentation is 

aimed at partitioning an image into regions with semantic information, and each region is 

assigned a class label. In contrast to object detection, semantic segmentation not only pays 

attention to the location of the object but also focuses on the pixel-level boundary of the 

object. Typical algorithms for semantic segmentation include FCN (2017) (Fully 

Convolutional Network), U-Net (2017), Seg Net (2017), Mask R-CNN (2017), etc. Xie 

(2023) redesigned the residual layering module and convolution method of the Mask R-

CNN model to optimize the detection and segmentation of wood defects such as cracks. 

However, the efficiency of detection and segmentation needs to be improved. Lin et al. 

(2023) proposed a data-driven semantic segmentation network based on U-Net for wood 

crack detection, which achieved more accurate segmentation results. 
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Attention Gate (AG) 
The AG in the U-Net model was first proposed by Oktay et al. (2018). The AG 

attention module adapts and automatically learns to focus on target structures of different 

shapes and sizes in medical images. The model using AG implicitly learns to highlight 

salient features that are useful for specific tasks while suppressing irrelevant regions in the 

input image. Tong et al. (2021) extracted relevant information from coarse scales to 

determine gating to eliminate noise and irrelevant responses caused by skip connections. 

Before the connection operation, AG only performs the merging of related activations, 

filtering out neuron activations for forward and backward transmission. AG performs linear 

transformation without any spatial support, downsampling the gate signal to reduce the 

resolution of input feature mapping, thereby reducing the parameter and computational 

resource consumption of the network model. Wang et al. (2020a,b) used Attention Gate 

(AG) instead of direct addition operation in the process of connecting the encoder and 

decoder to extract low-level features of the image and reduce the loss of detail information. 

Ren et al. (2024) introduced an attention gating module at the skip connection to implicitly 

suppress irrelevant features in the input image, improve sensitivity to target objects, and 

enhance extraction ability in complex scenes. Xu (2023) added the AttentionGate structure 

to the network model, which improved the response speed of each layer of the network to 

the region of interest, especially in the ERT image reconstruction task, where the edge 

processing of the reconstructed image was improved, while effectively reducing the 

redundant background medium response caused by network deepening. 

 

Convolutional Block Attention Module (CBAM) 
CBAM mainly includes channel attention mechanism and spatial attention 

mechanism, which respectively capture the dependency relationship between channels and 

spatial pixel level relationship. The mixture of the two can adaptively extract channel and 

spatial features, which is a soft attention mechanism. Sheng et al. (2023) proposed 

introducing the CBAM attention mechanism in feature extraction networks, combining 

spatial attention module and channel attention module to filter information, focusing on the 

local effective information of feature images, and improving the detection ability of 

occluded or truncated targets. Yang et al. (2023) introduced the Convolutional Block 

Attention Module (CBAM) theory to optimize the YOLOX network in their study, further 

improving the performance of the network model. The experimental results showed that 

the introduction of CBAM improved the detection accuracy of YOLOX on the insulator 

dataset by about 3%, and the performance of the model was optimized to a certain extent. 

Jia et al. (2022) screened the optimal model for bamboo stick recognition and then adopted 

the Convolutional Block Attention Module (CBAM) attention mechanism to replace the 

Squeeze Excitation (SE) attention mechanism in the MobileNetV3 network structure, 

enabling the network to extract features in both channel and spatial dimensions, thereby 

improving recognition accuracy. Li et al. (2023) proposed a RepVGG-CBAM model with 

CBAM attention mechanism and applied the model to classify 10 types of surface defects 

on aluminum profiles. Experimental results have shown that adding CBAM attention 

mechanism after RepVGG stages 1 to 4 results in the strongest classification ability. Ge et 

al. (2024) introduced CBAM in the study of wood ring segmentation to solve the loss of 

downsampling information and thereby improve the performance of DAF Net++. 
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Efficient Channel Attention (ECA) 
Zhang et al. (2023) introduced a lightweight attention mechanism called Efficient 

Channel Attention (ECA) to address the issue of background interference and increase the 

importance of insulator features. After adding ECA, the background noise is effectively 

suppressed, and more attention is paid to the insulator area, thereby improving the accurate 

detection ability of the model for insulator defects. Sheng et al. (2023) designed ECA 

Convblock in the backbone feature extraction network to prevent dimensionality reduction 

in model channel importance prediction, to enhance high-quality expression of target 

features, and to effectively improve defect detection accuracy. Li et al. (2022) made some 

modifications to the YOLOv5 model and introduced the ECA mechanism, assigning higher 

weights to important feature information and achieving good detection accuracy.  

Wang et al. (2022) introduced a lightweight ECA attention mechanism in the 

feature pyramid model PANet, which enables weight analysis of the importance of 

different channel feature maps through cross channel interaction, enabling the network to 

extract more prominent features to distinguish categories. Wu and Gu (2023) proposed a 

gait classification model based on convolutional neural network (CNN) and efficient 

channel attention (ECA) module for gait detection applications based on surface 

electromyography (SEMG) signals. CNN was used to extract features from one-

dimensional input surface electromyography signals to obtain feature vectors, which were 

then input into the ECA module for cross channel interaction. Wang et al. (2023) solved 

the problem of low target recognition accuracy and high model complexity in the field of 

3D object detection. Referring to the VoxelNet model, the ECA mechanism was introduced 

to reduce the complexity of the model while maintaining good performance. 

 

 

EXPERIMENTAL 
 
Method Framework 

To solve the problems of cracks being unable to be segmented due to similarity in 

background color, wood texture being similar to cracks, and segmentation errors occurring 

simultaneously with some joints, this paper proposes an improved Attention U-Net, namely 

IECA U-Net (Improved ECA-CBAM-AGU-Net). The architecture diagram of IECA U-

Net is shown in Fig. 1.  

 

Improved Attention Gate 
In the face of CNN’s fall pose (FP) prediction problem for small targets with large 

deformation, locating is usually done first, followed by segmenting. Oktay et al. (2018) 

added the Attention Gate (AG) module to U-Net and proposed the Attention U-Net model, 

which directly achieves integrated localization and segmentation without the need to train 

multiple models and a large number of additional parameters, while suppressing irrelevant 

background region responses and eliminating the need to crop ROIs across networks. 

Compared to the prototype U-Net, there was significant improvement in performance. To 

adapt to the surface image of two-dimensional sawn timber, AG was improved by 

removing depth channels and Resampler. In the improved AG, the inputs x and g are 

convolved and added separately, and then the weight map is obtained through continuous 

ReLU, convolution, and sigmoid. Finally, the input x is multiplied, as shown in Fig. 2. 
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Fig. 1. Network framework for semantic segmentation of sawn timber surface crack image 
based on attention U-Net with CBAM 
 

 

 
 

Fig. 2. AG Network Framework 

 

In Fig. 2, the attention coefficient α ∈ (0,1) highlights the ROI and suppresses 

irrelevant background feature responses. The multiplication of alpha and feature maps is 

based on element-wise multiplication. The above figure uses additive attention to obtain 

gating coefficients, which performs better in experiments compared to multiplicative 

attention. σ 1 and σ 2 are ReLU and Sigmoid functions, respectively, and W1, W2, and ψ 

are all convolution operations. Among them, the Sigmoid function can make the training 

converge better. 

 

Improved Convolutional Block Attention Module 
On the basis of the original Attention U-Net, the Convolutional Block Attention 

Module (CBAM) proposed by Woo et al. (2018) was added during the downsampling 

process. CBAM is a lightweight and general-purpose module with few parameters. It is 

easy to use and can be well combined with the CNN of the original model. CBAM mainly 

includes channel attention mechanism and spatial attention mechanism, which respectively 

capture the dependency relationship between channels and spatial pixel level relationship. 

The mixture of the two can adaptively extract channel and spatial features, which is a soft 

attention mechanism. In the channel attention module, the input feature map is first 
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compressed through max pooling and average pooling, and then the outputs of the two 

pooling features are used as inputs to the multilayer perceptron, which learns parameters. 

Finally, the Sigmoid function is used to obtain the importance of the features, and the 

importance probability of each channel is calculated to increase the weight of some 

channels. In the spatial attention module, the feature map output by the channel attention 

module is used as the input feature map of the spatial attention module. The image is 

compressed into a single channel along each channel through max pooling and average 

pooling at the channel scale. Then, parameters are learned through a 1x1 convolutional 

layer, and the importance of pixels is obtained through Sigmoid to generate spatial attention 

features, as shown in Eq. 1. 
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where F  is the final refined output, F  RCH W is the intermediate feature as input and  

represents element multiplication, AvgPool, MaxPool, and MLP represent average pooling, 

maximum pooling, and multilayer sensing, respectively. 

 
Improved Efficient Channel Attention 

This section continues to optimize and improve the Attention U-Net by adding the 

Efficient Channel Attention (ECA) module (2023) to the skip connections of the Attention 

U-Net network (referred to as CBAM-ECA-AG). The ECA module is a channel attention 

module that supports plug and play, which can enhance the channel features of the input 

feature map, achieve local channel interaction without dimensionality reduction, and 

significantly reduce the complexity of the model. Figure 3 shows the network framework 

of the ECA module.  

 

 
 

Fig. 3. E C A  Module Network Framework 
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In the figure, “GAP” represents global aver/*-age pooling and “⊗” represents 

matrix dot multiplication, which involves multiplying the elements at the corresponding 

positions in the matrix. Firstly, input a feature map with dimensions of H×W×C. Then, the 

global average pooling is used to finely compress the spatial features of the input feature 

map to obtain a 1 × 1 × C feature map. Then the original input feature map H×W×C channel 

is multiplied by channel to obtain a feature map with channel attention.  

When using one-dimensional convolution, adaptive selection of one-dimensional 

convolution kernel size is used to determine the coverage of local cross channel interactions, 

as shown in Eq. 2, 

odd

bC
C


+==

)(log
)(k 2                        (2) 

where k is the size of the convolution kernel, C is the number of channels, which are used 

to adjust the ratio between the number of channels C and the size of the convolution 

kernel, where 2 and 1 are taken respectively. 

 
Optimization of Loss Function  

In semantic segmentation tasks, there may also be foreground regions (in this case, 

surface cracks on sawn timber) that are much smaller than background regions. Using a 

cross entropy loss function may result in poor network performance, so it is necessary to 

optimize the loss function. This paper uses a multi loss function fusion method, introducing 

Dice loss and IoU loss, and linearly combining them with cross loss. The enhanced fusion 

method is used to assign different weights to each loss function, and the weights of the loss 

functions are adjusted according to the different characteristics of the training data to obtain 

the best results. Among them, Dice loss is determined by the Dice coefficient of semantic 

segmentation evaluation index, and the specific formula is: 

tcoefficienDiceLossD −=1ice    (3) 

The IoU loss is determined by the IoU intersection to union ratio, and the specific 

formula is, 

  (4) 

The loss function is expressed as: 

IoULossDiceLossBCELossL γoss ++=    (5) 

where α, β, and γ are used to adjust the parameters of the loss function weight. 

 

 

 

RESULTS AND DISCUSSION 
 
Implementation Details  

The proposed model was built upon the PyTorch library. All experiments and the 

model training were done on a 16 GB NVIDIA RTX4060Ti GPU. The training process 

employed the Adam optimizer with an initial learning rate of 5e−4, a batch size of 8, and 

100 iterations. 
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Evaluation Index  
In order to better compare the performance of various models, five evaluation 

indexes were used Prc (Percision.Prc), Rec (REcall, Rec), F1(F1 Score), IoUc (Intersection 

over Union, IoUc) and Miou (Mean Intersection over Union, MIouc). 

 

Comparative Analysis of Experimental Results 
This model specifically added the Efficient Channel Attention (ECA) module to the 

skip connections of the Attention U-Net network (referred to as CBAM-ECA-AG). The 

ECA module is a channel attention module that supports plug and play, which can enhance 

the channel features of the input feature map, achieve local channel interaction without 

dimensionality reduction, and significantly reduce the complexity of the model. By 

conducting ablation experiments, replacing the CBAM module and ECA module, 

optimizing the loss function and other experimental parameters, a model framework was 

determined that can segment surface cracks of sawn timber with high segmentation 

accuracy. Finally, comparative experiments were conducted with other semantic 

segmentation models (FCN, Seg Net, and DeepLabV3+) to evaluate the performance of 

the improved Attention U-Net compared to other semantic models 

In order for the model to achieve better segmentation results on the mask image, 

the authors will continue to explore the impact of changes in the weight of the loss function. 

Table 1 compares the semantic segmentation evaluation performance of ECA-CBAM-

AGU-Net models with different fusion weights of the loss function. 

 
Table 1. Influence of Different Fusion Weights Of ECA-CBAM-AG U-Net Model 
Loss Function on Semantic Segmentation Index of Sawn Timber Surface Crack 

Model U-Net+ECA+AG+skipCBAM 
(lr5e-4,wd5e-5,ep100) 

Prc Rec F1c IoUc MIoU 

0.2ce+0.5dice+0.3iou 82.41 63.84 73.06 57.56 78.09 

0.3ce+0.5dice+0.2iou 86.93 61.08 71.74 55.94 77.27 

0.1ce+0.5dice+0.4iou 87.84 58.94 70.54 54.49 76.52 

0.4ce+0.2dice+0.4iou 88.91 62.05 73.09 57.60 78.13 

0.4ce+0.1dice+0.5iou 90.09 58.37 70.85 54.85 76.72 

0.3ce+0.5dice+0.2iou 90.37 55.96 69.61 52.80 75.68 

0.3ce+0.6dice+0.1iou 84.86 63.63 72.73 61.38 77.88 

0.4ce+0.3dice+0.3iou 88.96 65.48 75.43 60.55 79.65 

0.25ce+0.5dice+0.25iou 82.04 70.92 76.07 61.39 80.04 

 

In Table 1, the semantic segmentation evaluation index scores of the ECA-CBAM 

AGU-Net model vary with different weights of α, β, and γ using multiple loss functions. 

When α=0.3, β=0.5, and γ=0.2, Prc achieved 90.37%, which is the highest score in Prc. 

When α=0.25, β=0.5, and γ=0.25, the model achieves 70.92%, 76.07%, 61.39%, and 80.04% 

in Rec, F1c, IoUc, and mIoU, respectively. From the perspective of semantic segmentation 

indicators, this weight is the optimal weight.  

The model developed in this work was compared with other semantic segmentation 

models (FCN, Seg Net, and DeepLabV3+) through experiments. Among them, FCN, 

DeepLabV3+, Seg Net uses Adam optimizer and cross loss function. The remaining 
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learning rates lr, weight decay wd, and iteration times ep are consistent with ECA-CBAM 

AGU Net. 

 

Table 2. Comparison of Different Segmentation Models of Sawn Timber Surface 
Cracks  

Model Prc Rec F1c IoUc MIoU 

FCN (adamlr5e-4wd5e-5-ep100) 83.01 62.36 71.22 55.30 76.92 

DeepLabV3+ (adamlr5e-4wd5e-5-ep100) 84.52 63.44 72.47 56.84 77.71 

SegNet (adamlr5e-4wd5e-5-ep100) 89.55 61.98 73.26 57.80 78.24 

U-Net+ECA+AG+skipCBAM 
(lr5e-4,wd5e-5,ep100,0.4ce+0.3dice+0.3iou) 88.96 65.48 75.43 60.55 79.65 

U-Net+ECA+AG+skipCBAM 
(lr5e-4,wd5e-5,ep100,0.25ce+0.5dice+0.25iou) 82.03 70.92 76.07 61.39 80.04 

 

As shown in Table 2, Seg-Net achieved the highest score of 89.55% in Prc for 

various semantic segmentation evaluation indicators, but the model was lower than the 

ECA-CBAM AGU-Net (0.4ce+0.3dice+0.3iou) model in Rec, F1c, F1c, IoUc, and MIoU, 

and the difference in Prc between the two was not significant. From the perspective of 

evaluation indicators, ECA-CBAM AG U-Net (0.25ce+0.5dice+0.25iou) still has the 

highest scores in Rec, F1c, IoUc, and MIoU indicators, but Prc is indeed the lowest. 

 

 
 

Fig. 4. Comparison of segmentation effects of different models on surface cracks of sawn timber 
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Although other models have poorer semantic segmentation metrics than the authors’ 

model in the self-made surface crack pattern dataset, it does not mean that this model 

performs poorly on other datasets. It may perform better than our model on other datasets, 

which largely depends on the quality of the dataset, the number of samples, and the 

accuracy of data labeling. 

Figure 4 compares the segmentation effects of different models on surface cracks 

in sawn timber. 

In the figure, FCN is susceptible to the influence of background knots, which 

severely respond as cracks. DeepLabV3+expands the response area of nodes and does not 

segment cracks that are similar to the background. Seg Net only segments obvious cracks, 

and when there are knots, knots, and cracks that exist simultaneously and are similar to the 

background cracks, no cracks are segmented. Taking all factors into consideration, priority 

should be given to using loss functions with fusion weights of α=0.4, β=0.3, and γ=0.3. 

Although the multi loss function fusion of this weight did not reach the best level on Prc, 

it is only second to 0.25ce+0.5dice+0.25iou in Rec, F1c, IoUc, and MIoU indicators, and 

Prc has increased by 6.92 percentage points compared to the latter. At the same time, in 

terms of segmentation performance, it can also segment cracks with similar backgrounds. 

Based on the comprehensive semantic segmentation evaluation index data and mask 

prediction segmentation performance, the ECA-CBAM AG U-Net (0.4ce+0.3dice+0.3iou) 

model is the best. 

 

 

CONCLUSIONS 
 
1. An improved Attention U-Net model was applied in a study of semantic segmentation 

of surface cracks in sawn timber. Using integrating experimental and comparative 

research, the Attention U-Net model was optimized and improved to obtain the optimal 

semantic segmentation model for surface cracks in sawn timber. Introducing CBAM in 

the encoding stage of the Attention U-Net model and using AdamW optimization 

instead of SGD and Adam achieved good crack semantic segmentation results, which 

can segment most obvious cracks. 

2. On the basis of the above, the ECA module was introduced to the skip connection part 

of the model, and multiple loss functions with different weights were fused instead of 

the original binary cross entropy loss function. The ECA module and CBAM module 

positions were replaced, and the optimizer parameters were adjusted (including weight 

attenuation of 5e-5 during training and learning rate adjusted to 5e-4). The number of 

iterations was increased to 100, and the ablation experiment was carried out. Compared 

with the previously improved model, the semantic segmentation index of surface cracks 

in sawn timber was significantly improved, laying a foundation for further work. 
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