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Ultrasonic Glued Wood Finger-jointed Panel Quality
Inspection System with Barker Code Pulse Excitation
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Glued wood finger-jointed panels are widely employed due to their efficient
use of wood resources and the enhancement of product quality. To
address defects in the quality inspection of these panels, a set of ultrasonic
glued laminated wood finger-joined board inspection systems was
designed using Barker Code pulse excitation. This was achieved by
adopting air-coupled ultrasonic technology and incorporating phase
coding technology. Relevant validation experimental research was carried
out on the performance of the system. The results show that the system
covered two key components, namely hardware and software, which
enabled its ultrasonic transducer to realise the functions of rapid scanning
of the internal and external qualities of the board and automatic C-scan
inspection imaging to identify defects in the specimen without contacting
the glued wood finger-joined board specimen. The validation test
confirmed that the inspection system achieved good accuracy and
reliability. It was concluded that this approach has potential to improve the
quality inspection technology of glued laminated direct lumber and to
promote the development of wood processing industry.
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INTRODUCTION

In the field of wood processing, defects, such as knots, cracking, mold, rot, insect
damage, grain irregularities, and blunt edges, can significantly impact the quality of sawn
timber. These issues affect both the processing and usage of sawn timber. An effective
solution to these problems is the use of finger-jointing and splicing technology to produce
glued wood finger-jointed panels. These panels are made by joining multiple boards
together, which optimizes wood resource usage, enhances quality, and reduces waste.
Finger-jointed lumber pieces and panels are widely used in various industries, including
wood-frame construction, furniture, interior decoration, transportation, military
applications, and musical instruments (Zhou et al. 2021).

With the rapid advancement of industrial technology, various inspection methods
have emerged in wood processing, including ultrasonic, stress wave, and vibration
techniques. Probabilistic methods have been used to study mechanical properties of
materials (Wang and Ghanem 2021, 2022, 2023; Yu et al. 2023). In non-contact ultrasonic
detection, phase coding methods, such as Barker code, Taylor code, and M sequences, are
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commonly used (Ghavamirad et al. 2018; Murata and Kaneda 2019). The Barker code,
known for its excellent noise suppression and autocorrelation properties, offers significant
advantages such as strong anti-jamming capability, high resolution, bandwidth efficiency,
ease of identification, and high system performance. This makes it highly promising for
ultrasonic detection in wood.

For example, in 2015, Sanabria et al. established a reliable nondestructive
ultrasonic system for inspecting wood composite structures by constructing a time-domain
finite-difference (FDTD) model. This model incorporated local anisotropic variations in
stiffness, damping, and density to effectively detect wood properties (Sanabria et al. 2015).
In 2019, Ahmad utilized Barker Code Thermal Wave Imaging for nondestructive testing
(NDT) of steel materials and compared it with conventional thermal NDT methods,
demonstrating that the technique offers higher contrast and signal-to-noise ratios (Ahmad
et al. 2019). In 2021, Maldaner developed a system integrating photoelectric sensors,
ultrasonic sensors, and encoders to detect and map plants in sugarcane rows using machine
learning modeling. This system proved effective in accurately detecting plants within
sugarcane rows (Maldaner et al. 2021). In 2023, Parvez employed Barker encoded thermal
wave imaging to identify anomalies in various materials. This method achieved a high
signal-to-noise ratio (SNR) of 108 dB and improved the reliability of thermal imaging
detection by identifying smaller defects at greater depths, even in fully corroded mild steel
samples (Parvez et al. 2023).

Given the increasing demand for wood, it is crucial to advance research and
development in high-level nondestructive testing and evaluation systems to enhance wood
utilization. This paper applies the Barker code phase coding pulse compression technique
to non-contact ultrasonic inspection of wood to improve the signal-to-noise ratio of
measurement signals. This method is particularly suited for detecting internal defects in
wood and offers advantages, such as rapid detection, accuracy, reliability, and no pollution
hazards, making it suitable for use in forest areas.

EXPERIMENTAL

Principles of Transmissive C-Scan and Phase-Encoded Pulse Compression
Techniques
Transmission C-scan

Ultrasonic C-scanning is an advanced automated inspection technology that
integrates ultrasonic detection, motion control, and image display processing. The principle
of this technology is illustrated in Fig. 1. During the ultrasonic C-scan process, an
ultrasonic signal is emitted from a transmitter-end transducer at the start of a predetermined
detection area on the sample. The signal travels through the air medium to the designated
sampling point, passes through the sample, and then returns to the air, where it is finally
received by the receiver-end transducer.

The received signal is then processed to extract amplitude and time data, which are
used as imaging parameters. The scanning line is followed to detect all remaining sampling
points in the area. Once the scanning is complete, the collected data are visualized to reveal
the morphological characteristics and dimensions of any defects, allowing for the
differentiation of various types of defects.
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Phase-encoded pulse compression technique

The basic principle of pulse compression technology involves converting long
pulses into short pulses using specific signal processing algorithms, thereby achieving
higher range resolution. In conventional radar systems, long pulses are used for detecting
long-range targets, but this often results in lower range resolution. Pulse compression
techniques address this by utilizing the phase and amplitude information of the pulses and
performing complex processing at the receiving end. This conversion enhances range
resolution in the time domain, allowing radar systems to more accurately determine the
distance between targets. This technique significantly enhances radar system performance,
enabling better adaptation to a wide range of environmental conditions and target
characteristics. Studies have demonstrated that applying pulse compression in air-coupled
ultrasonic detection can significantly improve the signal-to-noise ratio of the received
signal, making the main peak of the signal more distinguishable (Arkhipov et al. 2021,
Bruder et al. 2021).

(1) Principle of phase coding pulse compression technology

Currently, frequency modulation pulse compression techniques are widely used in
the field of ultrasonic detection. These techniques involve complex signal pre-processing
and can result in a relatively low signal-to-noise ratio, making signal analysis more
challenging. However, phase coding techniques offer considerable advantages in this
context. The signal of 7-bit sinusoidal Barker code is shown in Fig. 2.

Fig. 1. Ultrasound C-scan
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Fig. 2. 7-bit Barker code signal
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Figure 3 illustrates the autocorrelation of the 7-bit Barker code, which demonstrates
a high primary-to-secondary lobe ratio and significantly prominent peak characteristics.
This property effectively suppresses noise interference (Han et al. 2019; Soner et al. 2020).
In this study, the phase-coded pulse compression technique is employed to image the
received signal’s peak voltage by collecting and processing the data (Zhang et al. 2020; Li
et al. 2021), this method emphasizes the main peak characteristics of the signal, thereby
significantly enhancing imaging accuracy.
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Fig. 3. Autocorrelation of 7-bit Barker code
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(2) Comsol simulation analysis of Barker code pulse ultrasonic wood detection

The transmission and reception models of the 7-bit sine wave signal and 7-bit
Barker code signal were established in COMSOL, as depicted in Fig. 5. In this setup,
ultrasonic transducers are placed symmetrically, with the transmitting transducer at the
lower end and the receiving transducer at the upper end. The system operates at a frequency
of 40 kHz. The transmitting transducer emits ultrasonic waves, which propagate through
the air, experience attenuation, and eventually reach the receiving transducer. The
receiving transducer then captures the ultrasonic signals.
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Fig. 5. Ultrasonic emission and reception model

Figure 6 displays the received signal diagrams for both the sine wave and Barker
code signals. The sine wave signal, due to its simpler structure, is more prone to noise
interference, which can lead to information loss or errors. In contrast, the Barker code pulse
signal exhibits superior anti-interference capabilities due to its unique coding method. This
method effectively suppresses noise interference, thereby enhancing the reliability and
stability of the signal. Additionally, the Barker code pulse signal features a distinct main
peak characteristic at the receiving end, which improves the signal-to-noise ratio and
resolution. This allows for precise detection and analysis of the signal.

0.025 0.006
S S
g o
g © 0,000
s S

] -0.006

002575 0.5 1.0 15 2. 0.0 05 1.0 15 2.

Time (ms) Time (ms)
(a) Sine wave receive signal (b) Barker code receiving signal

Fig. 6. Acceptance diagram for both signals
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System Software and Hardware Design
System hardware design

The overall block diagram of the hardware of the ultrasonic detection of plywood
fingerboard quality inspection system with Barker code pulse excitation is shown in Fig. 7.
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Fig. 7. Detection system hardware design diagram

The motion control module of this system primarily consists of a dual axis scanning
platform, an operation interface, a main controller, and stepping motors. Users set the
motion parameters via the host computer’s operation interface and send commands to the
main controller. The main controller then regulates the motion of the dual-axis stepping
motors to perform the C-scan. The dual-axis scanning platform is designed with three drive
motors positioned along the X-axis and Y-axis to carry the ultrasonic transducer for
ultrasonic C-scanning detection. Two stepping motors along the X-axis are synchronized
to the same control signal, while a single control signal governs the Y-axis motor. This
configuration allows for precise control of the three stepping motors, enabling the
ultrasonic detection process. The scanning control flow is illustrated in Fig. 8.
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Fig. 8. C-scan control flow
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System software design

The software design of this quality inspection system includes: user interface, serial
communication, motion control system, Barker Code pulse output, signal acquisition,
signal processing, and imaging system. The system software design flow chart is shown in
Fig. 9.

This system belongs to the field of embedded system development, which uses
serial port connection to achieve programme downloading, debugging, and testing with the
target embedded system, as well as interacting with external devices. This serial
communication method provides a simple and reliable data transmission mechanism. In
this system, serial communication also undertakes the important tasks of remote control,
monitoring, and debugging of devices and systems. Specifically, it is responsible for
controlling the motor movement to complete the C-scan function and receiving the data
captured by the data acquisition card in real time for imaging processing. This
implementation of serial communication is fast and efficient, effectively improving the
performance of the system.

Data imaging design

In image processing algorithms, directly converting raw data into images often
results in a lack of smooth transitions between image pixels. This issue is particularly
problematic in wood inspection, as it can hinder the accurate localization of defects. To
address this, the system employs interpolation methods to refine the transitions between
pixel points (Xu et al. 2020; Wang et al. 2020). The most commonly used algorithm is the
multi-order multinomial spline difference algorithm, which constructs smooth curves or
surfaces over a given set of data points. This algorithm provides excellent smoothness,
avoids abrupt fluctuations caused by large gaps between data points, and offers high
accuracy and wide applicability. It can process one-dimensional, two-dimensional, or even
higher-dimensional data, yielding highly accurate interpolation results and accurately
reconstructing the shape of curves or surfaces.

However, the multi-order multinomial spline difference algorithm has limitations,
including high computational complexity and significant data requirements. This
complexity demands more computational resources and time, especially when handling
large datasets. To ensure computational efficiency, this paper primarily utilizes a low-order
spline interpolation algorithm. This approach maintains an effective balance between
computational complexity and interpolation error while preserving the desired
interpolation effects.

Spline interpolation essentially involves interpolating between multiple line
segments in a discontinuous manner to achieve smooth curve transitions, thereby
approximating the actual data trends more coherently. The core concept of spline
interpolation is to approximate discrete data points effectively by introducing a sufficient
number of interpolation nodes. This ensures that the curve achieves a high degree of
smoothness within the interpolation interval and maintains a certain level of continuity in
the derivative at the interpolation nodes. The division is performed within the set [a, b]
region.

Ata=X, <X <--<X <X =b 1)
The step function is a zeroth spline function:
Se(X) =2, +zbj(x_xj)3

The kth order spline function is obtained by integrating SO (x) k times:

()
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The cubic spline function is widely used in various fields for accurate data fitting
and smooth approximation due to its high efficiency and reliability (Hu et al. 2021; Cao et
al. 2023). In this study, to determine the optimal interpolation scheme, first-order linear
interpolation, third-order spline interpolation, and fifth-order spline interpolation were
applied to the original data. These interpolation methods provide finer approximations of
the original data, resulting in more accurate and smoother representations of the 2D data.
Through observing and comparing these three interpolation methods, it is possible to gain
insights into the performance of different interpolation algorithms in image processing,
offering a more reliable basis for data analysis. Figure 10 illustrates the imaging effects of
the three interpolation methods.

(a) raw imaging

(b) Linear interpolation

(c) Cubic spline interpolation (d) Fifth spline interpolation

Fig. 10. Three types of interpolation imaging maps

In this study, three different interpolation methods were evaluated for image
interpolation. Linear interpolation demonstrated the worst performance in terms of
smoothness, particularly struggling with datasets containing rapid changes or non-linear
relationships. Five-times spline interpolation, while providing more detail, proved unstable
and susceptible to sudden changes near the boundaries, resulting in poor imaging quality.
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Additionally, the computational demands of five-times spline interpolation were high,
significantly increasing the imaging time.

In contrast, three-times (cubic) spline interpolation provided excellent image
smoothness and avoided the emergence of distorted regions. It also performed well in terms
of computational efficiency, significantly reducing the imaging time. After comprehensive
consideration, the system opted for cubic spline interpolation to process the original
imaging data, balancing smoothness and computational efficiency. Interpolation is less
effective if there are rapid changes or non-linear relationships in the dataset.

Performance Verification of the Detection System
The ultrasonic glued wood finger-jointed board quality inspection system with
Barker code pulse excitation designed in this paper is shown in Fig. 11.

Fig. 12. node defects
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Nodule Testing
Determining the test sample and testing parameters

In this study, three defect-free specimens were selected and designated as W-1, W-
2, and W-3; in addition, three specimens exhibiting knots and internal cavities were labeled
Y-1, Y-2, and Y-3. The specifications for both types of specimens are detailed in Table 1.
Figure 12 illustrates specimen Y-1 of the glued laminated timber finger joint. This
specimen measured 400mmx80mmx8.47mm, with the detection area defined by the black-
framed section in the figure measuring 50mmx50mmx9mm. Prior to conducting C-scan
imaging, it is essential to accurately position the probe at locations A and B to perform A-
scan measurements. The amplitudes of signals obtained from these two points are
subsequently analyzed to ensure precision in data acquisition by the system. Through a
series of iterative trials, it was determined that a gain setting of 63dB was optimal for
subsequent C-scan imaging.

Mechanical Property Verification Test

For the detection results of internal defects in the system, it is necessary to evaluate
the accuracy. Usually, the defect of the sample is sawed to see if it is consistent with the
test results, and this method can cause damage to the wood. In this study, dynamic
mechanical properties experiment was chosen to verify the accuracy of the designed system
without causing damage to the wood itself (Corbi et al. 2021; Olonisakin et al. 2022;
Adegbemileke et al. 2024; Shavir et al. 2024).

Testing principle and procedure

The free plate transient excitation method is based on the transverse bending theory
of Euler beam (Wang et al. 2018, 2019). Through applying an external shock to the test
object to stimulate its vibration, the vibration frequency is collected and the first-order
bending frequency is obtained using Eg. 5 to obtain the value of the modulus of elasticity
of the specimen,
1*f2

h2

E =0.9462p
(5)

where E is the dynamic modulus of elasticity value (Pa); p is the dry gas density (kg/m3);
fib is the first-order bending frequency value of the free beam (Hz); | is the length of the
beam (m); and h is the thickness of the beam (m).

The main testing steps were as follows: First, a free beam configuration was
achieved by hanging the elastic cord at a distance of 0.224L and 0.776L from the end of
the glued laminated timber jointed plate specimen. A sound level meter was placed 10 mm
below the corner points of the plate specimen, and the CRAS vibration and dynamic signal
acquisition and analysis system was connected to the SsCras signal analysis software
(Wang et al. 2014, 2016). The instrument consisted of a signal conditioning box, a signal
acquisition box, the SsCras analysis software, and a computer. Second, the plate specimen
was excited by tapping the corner points to produce free vibrations, and the acceleration
sensor receives the vibration signal and converts it into an electrical signal output. The
electrical signal was amplified, filtered, and converted to a digital signal through an A/D
converter to obtain the spectrum and the first-order bending frequency of the specimen
(Wang et al. 2015). Finally, the elastic modulus E of the specimen was calculated using
Eq. 5.
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Fig. 13. Experimental site

Test Results and Analysis
Nodule analysis of test results

Figure 14 shows the detection signals at point A and point B. Relative to point A,
the obvious signal attenuation and even received signal reduction results at point B, the
root cause is that it contained a high density of nodes.
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Fig. 14. Signal detection

In Fig. 14, the C-scan imaging results clearly show that the regions with nodules
were represented by dark black areas, indicating relatively low amplitudes, while other
areas display yellowish-white results corresponding to higher amplitudes. This observation
aligns with the theoretical analysis.

The inspection system designed in this study performs effectively in detecting knot
defects in plywood finger-jointed boards. It accurately locates and outlines the shapes of
knot defects, demonstrating the system’s excellent performance in this area.
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Fig. 15. Imaging of nodal defects

Internal cavity detection

In this study, internal defects in glued laminated wood finger-jointed panels were
detected and imaged by C-scan. After C-scan detection of 30 pieces of glued laminated
wood finger-joined panels with dimensions of 450 mx250 mmx9 mm, several specimens
that contained internal defects were detected. The detection signal of one of the test pieces
is shown in Fig. 15.
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Fig. 16. Signal detection

When the ultrasonic signal encounters an internal cavity, it undergoes a dielectric
transition, leading to energy attenuation. As a result, the amplitude of the detected signal
is lower in regions with internal defects compared to defect-free areas. In contrast to the
defect-free regions, the imaging of internal cavity defects exhibited a strikingly bright
white tone, making the defects more prominent in the imaging data. However, due to the
relatively thin nature of the internal cavity defects, the ultrasonic signal experienced only
slight attenuation as it passed through the board, resulting in a higher amplitude in the
received ultrasonic transmission signal. These test results are entirely consistent with the
theoretical analysis, which confirms the system’s high-performance capabilities in
detecting internal defects in plywood finger joints.
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(a) Deficiency 1

(b) Deficiency 2

Fig. 17. Internal cavity defect detection results of the sample

Modulus of elasticity test results and analyses

For both defect-free and defective specimens, the modulus of elasticity was
measured in the direction of the wood grain. The results show that the dynamic modulus
of elasticity of all specimens in group W was greater than that of specimens in group Y,
with mean values of 8794 MPa and 7349 MPa, respectively. The dynamic modulus of
elasticity for the defect-free specimens was 19.6% higher than that for the defective
specimens, confirming the accuracy of the system’s scanning results.

Additionally, Table 1 indicates that the main factors affecting the difference in
elastic modulus between the two groups were the density of the specimens and the first-
order bending frequency value. Given nearly identical apparent dimensions, the presence
of internal defects, such as voids, knots, and cracks, can reduce the density and first-order
bending frequency of the specimen. Obviously, the mechanical results from this study were
consistent with the findings from the ultrasonic quality inspection system for glued wood
finger-jointed boards using Barker code pulse excitation, thus verifying the accuracy and
reliability of the inspection system.

Table 1. Transient Excitation Test Results of Free Plate

First- Modulus
Test Length Width Tickness Mass Density order of
Item L (mm) (mm) h (mm) m (9) p (kg/m?3) Bend Elasticity
f (Hz) E (MPa)
W-1 400 80 8.5 100.4 369 267.5 8855
W-2 400 80 8.68 102.3 368 270.6 8671
W-3 401 80 8.51 104.1 387 262.2 8856
Cov(%) 0.99%
Y-1 400 80 8.47 93 343 250 7241
Y-2 401 80 8.57 98.7 359 250 7474
Y-3 400 80 8.54 95 348 252 7332
Cov(%) 1.3%

CONCLUSIONS

This study was dedicated to the non-destructive testing technology of glued wood
finger-joined boards, which has potential to improve the production efficiency and quality
inspection level of wooden products and contributes to the saving of wood and promoting
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the development of the wood processing industry. The test system used in this study adopts
air-coupled ultrasonic technology and incorporates phase coding technology.

1. An ultrasonic inspection system utilizing Barker code pulse excitation was designed
specifically for glued wood finger-joined boards. This system integrates both hardware
and software components and is equipped with automatic C-scan capabilities for
detecting and imaging wood defects. Performance verification tests of the inspection
system, alongside mechanical property tests on the inspected plywood finger-joined
boards, demonstrated its accuracy and reliability.

2. The dynamic mechanical property tests on the defective plywood finger-joined boards
showed results consistent with the expectations of the constructed inspection system,
fully verifying the excellent accuracy and high reliability of the system. This dynamic
mechanical properties test further establishes the applicability of the testing system for
measuring the quality of plywood finger-joined boards, and provides strong empirical
support for its effectiveness in practical industrial applications.
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