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Evaluation of Lignocellulatic Activity of Enzymes from 
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The production of lignocellulytic enzymes by microwave-radiated 
Pleurotus sajor-caju was assayed. Wheat straw was employed as 
substrate to P. sajor-caju for production of laccase, manganese 
peroxidase (MnPase), filter-paperase (FPase), carboxmethyl cellulase 
(CMCase), and cellulase (as evaluated using microcrystalline cellulose). 
P. sajor-caju exposed to 10 s of microwave radiation (MR) showed 
maximum growth with colony radius of 7.17 ± 0.45 cm, while with 
increasing the exposure time up to 50 s the growth decreased up to 2.67 
± 0.22 cm. Moreover, it failed to grow at 80 s of exposure time. Cellulase, 
MnPase, FPase, CMCase, and laccase activities were induced to 37 ± 
.0.54, 49 ± 2.36, 189 ± 2.12, 0.37 ± 0.06, and 1.58 ± 0.03 U/mL compared 
to that at control 31 ± 0.25, 46 ± 1.25, 177 ± 1.65, 0.28 ± 0.03, and 1.37 ± 
0.12 U/mL, respectively as a result of P. sajor-caju exposure to 10 s of 
MR. As the exposure time increased, these enzymes activity decreased. 
Different levels of moisture with surfactant (polysorbate 80) were applied 
to optimize the enzymes activities at 10 s of exposure time. The optimum 
activities 3.15 ± 0.23, 0.62 ± 0.06, 269 ± 5.36, 65 ± 1.63, and 48 ± 0.98 
U/mL were recorded for cellulase, MnPase, FPase, CMCase, and laccase, 
respectively at 70% of moisture and 0.15 mL/L of polysorbate 80.   
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INTRODUCTION 
 

 Lignocellulose is a major constituent of woody and decayed plant materials. 

Various extracellular enzymes generated from white rot fungi (WRF), such cellobiose 

dehydrogenase (CDHase), lignin peroxidase (LiPase), laccase, and manganese peroxidase 

(MnPase), are associated with the breakdown of lignin and its derivatives (Reyes et al. 

2021; Al-Rajhi et al. 2022a). Each year, a large amount of straw is generated from wheat 

cultivation. While some is utilized as feed for animals or as a substrate to cultivate edible 

mushrooms, the remainder can be regarded as a huge underutilized resource of energy 
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(Devi et al. 2024). Globally, a significant amount of lignocellulosic remains from 

agriculture (such as wheat straw) and wood (such as wood chips), and different wastes of 

industry have accumulated as a result of the growing agro-industrial activities. The 

ecosystem is contaminated by these substances (Elgueta and Diez 2010; Sánchez and 

Montoya 2020). It is crucial to use lignocellulose residues to increase WRF’s ability to 

produce extracellular phenoloxidase enzymes (Omoni et al. 2022; Abiola-Olagunju et al. 

2024). Maintaining sustainable social development may depend on making full use of 

lignocellulosic resources. Enzymatic hydrolysis of these wastes to produce valuable 

compounds and solvents is the most promising method (Shankar et al. 2024). The past 20 

years have seen a great deal of study in this field. Two sub-processes make up the 

conversion: first, lignocellulosic materials are hydrolysed to produce fermentable sugars, 

and then those sugars are fermented to produce the desired products (Singh et al. 2024).  

Lignocellulolytic enzymes serve numerous roles in biotechnological processes in 

the chemical, fuel, brewery, food, wine, textile, and pulp, dyes degradation and paper 

industries (Xu et al. 2023; Pham et al. 2024). In fungi, extracellular enzymes are 

constitutively produced in different amounts, and they are affected by many typical 

fermentation factors such as medium constituents, carbon/nitrogen ratio, temperature, pH, 

and aeration level (Abdel Ghany et al. 2018; Al Abboud et al. 2022; Bakri et al. 2022; An 

et al. 2023; Aza and Camarero 2023), besides metal ions, particularly Cu 2+ (Akpinar and 

Ozturk 2017; Abdel Ghany et al. 2020; Al-Rajhi et al. 2022b). The occurrence of Mn2+ is 

known to induce the production of MnPase in many WRF, but Mn2+ lowers LiPase titers 

(Li et al. 2022). The content of moisture is a critical agent on enzymes production (Sosa-

Martínez et al. 2023). A reduction in enzyme yield can be caused by higher moisture levels 

due to steric hindrance of the producer strain. The bioavailability of less soluble substrates 

for the fungi can be increased by surfactants, especially polysorbate-80 (Sun et al. 2018). 

Many investigators have mentioned that some natural inductive compounds such as 

phenols and flavonoids are present in lignocellulosic wastes including rice bran, oak 

sawdust, wheat straw, and wheat bran; these substrates can be used to induce the fungal 

lignocellulatic enzymes secretion (Wang et al. 2015; Wang et al. 2019; Hermosilla et al. 

2020). Also, olive leaves contain hydroxytyrosol and oleuropein which act as inducers for 

laccase production by white rot fungi (Yuan et al. 2015).  

 Electromagnetic radiation includes several forms, including microwave radiation 

(MR). During MR, the target samples are heated by the thermal energy generated from 

electromagnetic energy, and subsequently interacts with the ingredients of the target 

samples (de la Hoz et al. 2005). Fungal growth is regulated and inhibited via numerous 

chemical, physical, and biological methods. However, MR is one of the greatest physical 

techniques to manage of fungal pathogens and decaying wood fungi (Ahmed and Amein 

2023). According to Poonia et al. (2021) the viability of treated white and brown rot fungi 

namely Trametes versicolor and Rhodonia placenta by microwave radiation decreased the 

dependency on exposure time with complete inhibition at 180 s. In another study, Mahdi 

et al. (2021) mentioned that the exposed bacteria and fungi to radiation of microwave for 

45 s were completely killed. Poonia et al. (2021) utilized MR to repress the growth of 

Serpula lacrymans (brown rot fungus), which is important in European indoor rot inside 

thick wooden beams (Poonia et al. 2021). Several properties such as rapid reaction time 

and low reactivity with applied biomass were associated with MR. The authors are 

proposing the hypothesis in this work that MR at low contact time may enhance the activity 

of used fungus to degrade wheat straw with lignocellulotic enzymes production. Therefore, 

the main purposes of this investigation were to evaluate the influence of microwave 
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radiation on the white rot fungus Pleurotus sajor-caju, in addition to polysorbate 80 to 

enable their efficient hydrolysis of lignocellulosics biomass from wheat straw to produce 

lignocellulotic enzymes. 

 

 
EXPERIMENTAL 
 
Fungus and Wheat Straw Used 

Pleurotus sajor-caju (obtained from Professor Abdelghany TM, Al Azhar 

University, Egypt) was cultivated for 15 days at 28 °C on the surface of Malt agar in petri 

dishes. Mycelium Agar plugs containing active mycelia (6 mm in diameter) were cut and 

used for fungus propagation. Dried wheat straw (WS) was collected from agriculture areas 

in Saudi Arabia and then cut into 2 to 3 mm lengths. 

 
Fungal Growth and Production of Lignocellulytic Enzymes at Different Times 
of Microwave Radiation  
 The cultivated P. sajor-caju on malt agar plates at 8 days was exposed to a 

household microwave oven (Type Zanussi, 230 V, 50 Hz, 2450 MHz, 1100 W, China) for 

10, 30, 50, or 80 sec. From each plate, a disc (6 mm) of exposed fungus to microwave ray 

was used to inoculate a uniform malt agar media and incubated at 28 °C. The developed 

colony of the fungus was measured after 8 days. The well growth mycelium colonies on 

malt agar plates were plugged (9 mm in diameter) from the growing colonies and applied 

to inoculate on wheat straw as a substrate. The flasks containing the fungus inoculum were 

incubated for 14 days at 28 °C, and then laccase, MnPase, CMCase, FPase, cellulase 

(evaluated based on microcrysalline cellulose degradation), and extracellular protein were 

determined. 

 
Enzymes Preparation 

In a 500 mL conical flask, 10 grams of the wheat straw waste were added. After 

adding different levels (50 to 80 %) of moistening agent besides different concentration 

(0.05 to 0.2 mL/L) of polysorbate 80 (Tween 80) to the substrate, it was autoclaved for 30 

min at 121 °C. Two 6 mm fungus discs were utilized to inoculate every flask. For 15 days, 

they were incubated at 28 °C. Following the incubation period, each flask received 100 mL 

of distilled water, and the flasks were shaken for 60 min at 200 rpm. Using muslin cloth on 

a glass funnel, the entire contents of the flask were filtered into a dry, clean flask. The 

filtrates underwent a 10-min cooling centrifugation at 80,000 rpm. Crude enzymes were 

made from the supernatant solutions. The crude enzymes were directly applied in some 

experiments, while other quantity of enzymes was kept for short times in a refrigerator at 

4 °C. 

 

Tests for Cellulase Activity 
Before describing various tests for enzyme activity, it is important to clarify that 

three of them, namely the “CMCase”, “FPase”, and “MCCase” tests, are all different means 

of determining the activity of one class of enzymes, the cellulase class. The CMCase test 

employs a soluble derivative of cellulose, whereas the “MCCase” test employs crystalline 

cellulose. The “FBase” can be regarded as intermediate in character, since the cellulose 

fibers within the filter paper will contain both crystalline and non-crystalline cellulose 

domains. 
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Carboxymethyl cellulase (CMCase) test and protein quantity detection  

As described in Wang et al. (2008), 1 mL of pH 5.0 sodium acetate buffer was 

mixed with 1 mg of carboxymethyl cellulose. An aliquot of 1 mL of the supernatant 

(enzyme) was placed in a clean, dry tube along with 1 mL of 1 percent CMCase in acetate 

buffer. For thirty min, the tube was kept at 62 °C, after which the released reducing sugar 

was recorded using the Miller (1959) DNS method, with the absorbance being measured 

at 540 nm. The blank was one mL of distilled water rather than one mL of supernatant 

(enzyme). Using the glucose standard curve, the concentration of the resulting reducing 

sugar was ascertained. The micromole of glucose released/mL of culture filtrate/min is one 

unit of CMCase. The detected quantity of soluble proteins in the supernatant containing 

the fungus filtrate of medium growth was performed according to protocol of Lowry 

(1951).                                                

 
Filter-paperase (FPase) test 

An aliquot of 1 mL of the enzyme-containing supernatant (pH 4.8) and 2 mL of 

0.1M citrate buffer pH 4.8, containing 0.05 g of filter paper (Whatman No. 1) (Gadgil et 

al. 1995). For 60 min, the tube was incubated at 50 °C. The micromole of glucose 

released/mL of filtrate per/min is equivalent to one unit of FPase. 

 

Microcrystalline cellulose (MCC)-ase test 

Avicell MCC (2.0 g) was mixed with 100 mL of sodium phosphate buffer (SPB) 

with pH 6.6 according to method of Li and Gao (1997). An aliquot of one mL of the 

enzyme-containing supernatant was combined with 1 mL of 2% MCC in SPB in a clean, 

dry tube. For two hours, the reaction mixture was incubated at 40 °C. One micromole of 

glucose liberated/mL of filtrate/min was defined as one unit of MCCase.  

 

Laccase Test 
Laccase activity was tested according to Garzillo et al. (2001). Two mM 2,2 azino-

bis 3-ethyl benzo-thiazoline-6 sulforicacide (ABTS) was mixed with McIlvaine buffer (pH 

5) in a 1 mL reaction mixture. One hundred microliters of centrifuged extracellular 

supernatants were added to the assay mixture. Through observation of the absorbance at 

420 nm at 30 °C, the enzymatic activity was calculated in IU.                               

 

Manganase Peroxidase (MnPase) Test 
In a one cm quartz cuvette, MnPase activity was measured. In a McIlvaine buffer 

(pH 5.0), the 1 mL reaction mixture contained one mM Mn2+ and two mM ABTS. Initiating 

the peroxidase activity, 0.4 mM H2O2 was added to the assay mixture after 100 µL of 

centrifuged extra cellular fluids (supernatants) were added (Garzillo et al. 2001). Using a 

spectrophotometer (JENWAY, Model 6300, EU) at 30 °C, the absorbance change at 420 

nm (ABTS), =36 mM-1cm-1, was monitored to estimate the enzymatic activity in IU. 

 

Statistical Examination 
Standard deviation (± SD) was estimated from the calculation of the mean three 

replicates. Subsequently, the Tukey-Kramer honestly significant difference (HSD) test was 

employed. The level of significance was 5%. 
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RESULTS AND DISCUSSION 
 

The production of lignocellulytic enzymes on WS as a cheap, renewable substrate 

has become well known. In this work, WS was employed as substrate for production of 

value-added enzymes using the fungus P. sajor-caju. In a previous study (Biswas et al. 

2019) it was stated that WS is a suitable substrate for MnPase and lipase production as well 

as other enzymes. Table 1 shows the effect of MR on growth of P. sajor-caju. The 

outcomes of fungus growth reflected that as the fungus was exposed to different times of 

MR, the enzyme production increased up to 7.17 ± 0.45 mm at 10 s, while after this 

exposure time the growth decreased to 4.53 ±  0.32 and 2.67 ± 0.22 mm at 30 and 50 s. 

Furthermore, the fungus failed to grow at exposure time 80 s. All of these results were 

compared with untreated fungus, where the colony growth was 6.66 ± 0.28 mm with HSD 

at 5% of 0.816 among all growths at the different exposure times. The obtained findings 

were in agreement with outcomes of Poonia et al. (2021), where the growth of brown and 

white rot fungi namely Rhodonia placenta and Trametes versicolor, respectively, 

decreased based to the applied exposure time of MW. Górny et al. (2007) mentioned that 

the influence of microwave radiation on fungal and bacterial viability depended on the time 

of exposure and power density of radiation.   

 

Table 1. Effect of Different Exposure Times of Microwave Radiation on the Growth 
of P. sajor-caj 

Time (s)  Growth Diameter (cm) 

Control 6.66 ± 0.28 

10 7.17 ± 0.45 

30 4.53 ± 0.32 

50 2.67 ± 0.22 

80 0 ± 0.0 

HSD at 5% 0.816 

± Standard deviation of average 3 repetitions of results 
 

 The effect of microwave radiation as a physical effect on development of fungi and 

their lignocellulatic enzymes activity was selected due to several advantages such as non-

contact and volumetric heating, rapid reaction period, and little reactant consumption 

(Bichot et al. 2022). According to other studies, the generated electromagnetic waves from 

microwaves penetrate easily and rapidly inside the applicable biomass or substrate 

(Beneroso et al. 2017; Bundhoo 2018). Enzymes activity of P. sajor-caju was evaluated 

under different times of exposure to MR (Table 2). Exposure to short time 10 s of 

microwave irradiation induced all the examined enzymes namely MCCase, MnPase, 

FPase, CMCase, and laccase, where the activities were 37 ± .0.54, 49 ± 2.36, 189 ± 2.12, 

0.37 ± 0.06, and 1.58 ± 0.03 U/mL compared to that at control 31 ± 0.25, 46 ± 1.25, 177 ± 

1.65, 0.28 ± 0.03, and 1.37 ± 0.12 U/mL, respectively. MR at 30 and 50 s of MR repress 

the enzymes production by P. sajor-caju. Since at 50 s, the values of activities were 19 ± 

0.65, 27 ± 0.65, 124 ± 3.25, 0.21 ± 0.05, and 0.78 ± 0.09 U/mL for MCCase, MnPase, 

FPase, CMCase, and laccase, respectively. The effect of MR was studied by Zhu et al. 

(2006) on the enzymatic hydrolysis of rice straw. Their results showed that the level of 

initial hydrolysis was greatly speeded up, but the yield then declined slightly. Improving 

the enzymatic saccharification of grain stillage by Phanerochaete chrysosporium was 

reported by pretreated via microwave-assisted hydrothermal treatment (Ren et al. 2020).    
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Table 2. Effect of Different Times of MR on Cellulytic Enzymes and Extracellular Protein Produced by P. sajor-caju by Solid State 
Fermentation of Wheat Straw (± Standard deviation of average 3 repetitions of results) 

Time (s) 
Enzyme Activity (U/mL) 

Protein (µg/mL) 
MCCase FPase CMCase MnPase Laccase 

Control 31 ± 0.25 46 ± 1.25 177 ± 1.65 0.28 ± 0.03 1.37 ± 0.12 181 ± 3.25 
10 37 ± .0.54 49 ± 2.36 189 ± 2.12 0.37 ± 0.06 1.58 ± 0.03 197 ± 2.36 
30 30 ± 0.36 36 ± 1.56 167 ± 1.32 0.29 ± 0.04 1.32 ± 0.21 152 ± 4.25 
50 19 ± 0.65 27 ± 0.65 124 ± 3.25 0.21 ± 0.05 0.78 ± 0.09 102 ± 2.52 

HSD at 5% 4.25 6.45 9.19 0.06 0.36 11.43 
 
Table 3. Production of Lignocellulytic Enzymes on Wheat Straw Amended with P. sajor-caju   

Treatments Enzymes Productivity (U/mL) 
Proteins 
(µg/mL) 

Moisture 
(%) 

Polysorbate 
80  (mL/L) 

Laccase MnPase CMCase FPase MCCase 

50 

0.05 0.85 ± 0.04 0.23 ± 0.06 128 ± 3.25 27 ± 1.32 18 ± 0.96 179 ± 1.96 

0.10 1.41 ± 0.09 0.27 ± 0.03 162 ± 2.36 34 ± 1.65 24 ± 1.32 196 ± 1.25 

0.15 0.55 ± 0.06 0.16 ± 0.04 125 ± 3.25 24 ± 2.32 17 ± 0.36 122 ± 2.54 

0.20 0.53 ± 0.02 0.15 ± 0.01 120 ± 4.12 21 ± 1.03 14 ± 0.21 118 ± 1.54 

HSD at 5% 0.15 0.07 6.21 1.36 2.12 8.25 

60 

0.05 1.37 ± 0.06 0.28 ± 0.05 178 ± 4.25 47 ± 1.25 33 ± 1.01 182 ± 2.85 

0.10 1.05 ± 0.09 0.33 ± 0.03 196 ± 2.54 52 ± 0.9 34 ± 0.65 185 ± 3.52 

0.15 2.06 ± 0.12 0.48 ± 0.04 215 ± 3.26 64 ± 2.10 39 ± 0.25 232 ± 5.14 

0.20 1.03 ± 0.11 0.46 ± 0.05 190 ± 4.65 62 ± 1.36 34 ± 0.69 216 ± 4.58 

HSD at 5% 0.32 0.08 14.54 3.54 1.54 7.5 

70 

0.05 2.93 ± 0.21 0.38 ± 0.03 181 ± 2.23 49 ± 1.36 40 ± 2.54 183 ± 2.54 

0.10 1.96 ± 0.13 0.59 ± 0.02 184 ± 1.32 57 ± 0.89 44 ± 1.32 196 ± 4.36 

0.15 3.15 ± 0.23 0.62 ± 0.06 269 ± 5.36 65 ± 1.63 48 ± 0.98 221 ± 3.54 

0.20 1.94 ± 0.12 0.48 ± 0.03 198 ± 2.54 63 ± 0.78 39 ± 2.21 165 ± 1.36 

HSD at 5% 0.28 0.09 6.55 5.32 4.12 8.25 

80 

0.05 0.86 ± 0.08 0.25 ± 0.02 113 ± 2.54 22 ± 1.21 15 ± 0.65 135 ± 2.10 

0.10 1.32 ± 0.12 0.36 ± 0.05 150 ± 3.14 27 ± 1.13 22 ± 0.36 155 ± 1.21 

0.15 0.57 ± 0.06 0.29 ± 0.03 122 ± 4.21 20 ± 0.69 16 ± 0.21 136 ± 1.13 

0.20 0.55 ± 0.07 0.24 ± 0.04 111 ± 1.32 18 ± 1.12 14 ± 1.02 87 ± 1.42 

HSD at 5% 0.241 0.06 6.54 2.54 2.21 15.65 
 

± Standard deviation of average 3 repetitions of results 
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The exposed fungus culture to 10 s of MR with cultivated certain optimum 

condition was studied for the optimization of enzymes production (laccase, MnPase, FPase, 

MCCase, and extracellular protein). The variables used were volume of moisting agent 

polysorbate 80 was added as surfactant to help in secretion of enzymes on solid state 

fermentation. There has been some investigation showing that lignocellulytic enzymes 

secretions by Pleurotus ostreatus depend on the producer of fungi, substrate composition, 

and cultivation condition (da Silva et al. 2019; Zhang et al. 2023). The maximum activities 

of studied enzymes were noted at 0.10 mL/L of polysorbate 80 and moisture 50%, at 0.15 

mL/L of polysorbate 80, and moisture 60% and 70%. At 80% moisture, the maximum 

activities of all studied enzymes were recorded at 0.10 mL/L of polysorbate 80. Generally, 

70% of moisture and 0.15 mL/L of polysorbate 80 represented the optimum conditions for 

enzymes activities (3.15 ± 0.23, 0.62 ± 0.06, 269 ± 5.36, 65 ± 1.63, and 48 ± 0.98 U/mL 

for MCCase, MnPase, FPase, CMCase, and laccase, respectively). The outcomes of Zhang 

et al. (2023) designate that it was probable to reach important activities of some enzymes, 

namely LiP and cellulase utilizing Pleurotus ostreatus with lignocellulosic biomass 

fermentation under solid state condition by aiding exogenous inducers of surfactants. 

Generally, according to published reports, the microwave-irradiated biomasses were 

affected by several associated parameters of microwave irradiation; from these parameters 

the hydration condition and the polarity of the reaction substrate which subsequently effect 

the enzymatic productivity (Chen et al. 2020). Moreover based on another study, 

microwave heating appears to possess an influence on the stereo-selectivity of enzymes 

(Mazumder et al. 2004). A direct microwave energy absorption by the enzyme polar 

substrates result in a greater reactivity of the chemical functional groups included in the 

enzymatic reaction. Other mechanisms associated with change of enzyme activity caused 

my microwaves were reported (Habinshuti et al. 2020; Deng et al. 2022). For instance, the 

activity of thermally unstable enzymes was affected via treatment by microwave because 

of heat denaturation. Treatment by microwave may cause some protein sites to become 

more susceptible to enzymatic hydrolysis due to molecular rearrangement and unfolding 

of proteins. In tables (2 and 3), there is a relation between the activity of enzymes and the 

detection amount of proteins, where the high activity of enzymes at all treatments was 

accompanied by a high detected amount of protein and vice versa.  

In the present paper, polysorbate 80 at a specific concentration increased the 

enzymes activity. According to Shrestha et al. (2023), surfactant giving an appropriate 

membrane composition for enzymes to join with the substrate can be expected to increase 

their activity. Polysorbate 80 modifies the structure of fungal cell membranes to encourage 

the excretion of ligninolytic enzymes (Rodrigues et al. 2008). However, at high 

concentrations of polysorbate 80 above 0.15 mL/L, the activity of enzymes was decreased, 

maybe due to that surfactant at these concentrations affecting the permeability of cell 

membrane, leading to blockage the enzymes secretion as mentioned previously (Ahlawat 

et al. 2009). Laccase yield from Pleurotus sajor-caju was increased from 33.5 to 50 times 

when growth medium amended with 7.5% mL/v of polysorbate 80 compared to its yield in 

medium without polysorbate 80 (Teodoro et al. 2018). He et al. (2023) documented that 

the addition of polysorbate 80 promoted the increasing in temperature during the 

composting process that a companied by accelerate the lignocellulose degradation and 

decline the phytotoxicity as well as increase the lignocellulytic enzymes. Further 

investigations are required to determine the effect of suitable conditions such as pH, 

temperature, fermentation process, and some metals in combination with the effect of MR 
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on the lignocellulatic enzymes activity as well as the application of lignocellulatic enzymes 

on the industrial scale. 

 
 

CONCLUSIONS 
 
1. The investigation concluded that low exposure time (10 s) of microwave radiation has 

better potential of application to induce lignocellulotic enzymes of P. sajor-caju using 

WS biomass. 

2. Moisture level of 70% and 0.15 mL/L of polysorbate 80 considered the optimum 

conditions for the secretions of lignocellulotic enzymes.  
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