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The fall webworm (Hyphantria cunea) poses a significant threat to 
agriculture, as its larvae feed on leaves and form silken webs, which can 
severely impact plant growth. However, the lack of specific image datasets 
for the larvae’s webs hinders the use of image recognition technologies in 
pest prevention and control. To address this issue, an enhancement 
method is proposed here based on an improved Deep Convolutional 
Generative Adversarial Network (DCGAN). This method generates a 
diverse set of high-quality web images, significantly expanding the existing 
dataset. Experimental results demonstrated that this enhanced dataset 
improved the robustness of recognition networks, enabling better 
automatic identification and precision spraying to control Hyphantria 
cunea. This approach not only advances automated pest monitoring in 
agriculture but also offers new possibilities for applying similar 
technologies to the identification of other plant pests. 
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INTRODUCTION 
 

The American Hyphantria cunea, also known as the autumn curtain moth, is a key 

target for forestry control because of its high reproduction rate and rapid spread (Yang et 

al. 2008). The damage of American H. cunea is primarily caused by larvae feeding on 

leaves, and the larvae start to feed a few hours after hatching and spit out silk and form a 

net curtain. The whole larval stage feeds heavily, causing low resilience of the tree and 

even death of the whole plant in severe cases (Haijun et al. 2006). The larval stage has a 

clear net curtain, which becomes the best period for control. Chemical control is currently 

the most effective method. The common way is to manually spray the chemical agent on a 

large scale. However, this method is inefficient and causes serious environmental pollution. 

There is an urgent need for the emergence of an intelligent spraying technology to achieve 

accurate automated on target spraying operations. Accurate target identification is a 

prerequisite for achieving on-target spraying. In recent years, with the development of 

neural networks, many deep learning-based methods have been widely promoted and 

applied in the field of pest and disease identification in agriculture and forestry, while deep 

learning algorithms require huge data sets as training support (Ding et al. 2019). For the 

acquiring of images of American H. cunea larvae net curtains, there are problems, such as 
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the difficulty of acquiring images of net curtains in higher and deeper parts of the bush, 

high manual acquisition workload, and large differences in images under different lighting 

conditions, which make it difficult to form a sufficiently large database. 

To expand the original dataset and enhance the generalization ability of neural 

network models (Yang and Li 2021), many methods have been proposed. Some literature 

presented enhanced datasets using geometric transformations of the original images 

(including various operations such as deformation, cropping, mirroring, scaling, and 

rotation) (De Andrade 2019); some literature adjusted the brightness and contrast of the 

original images randomly or added random noise to the original images, increasing the 

number of samples in the dataset (Lopes et al. 2017), using the method of adding Gaussian 

noise to the images to generate new images; some other literature adopted the method of 

randomly intercepting or randomly masking a part of the images (Sun et al. 2017), using 

the replacement of different regions of the images to generate new images. These methods 

do not take full advantage of the intrinsic characteristics of the original samples, resulting 

in a trained neural network model with limitations and poor generalization ability. To solve 

this problem, automatic image generation was created and in 2004, a method to generate 

new datasets using neural networks was first proposed in the literature (Zhou and Jiang 

2004). Since then, it has been one of the key research directions in the field of machine 

vision (Radford et al. 2015; Isola et al. 2016; Grant-Jacob et al. 2022). Meanwhile, the 

rapid development of deep learning has greatly facilitated the development of image 

generation techniques. The proposal of Generative Adversarial Networks (GAN) provides 

a completely new solution (Goodfellow et al. 2014). The GAN has been continuously 

improved and has been applied in many fields such as generating audio (Yamamoto et al. 

2019), high resolution images (Karras et al. 2017), and image style conversion  (Yang et 

al. 2022). In this paper, an improved DCGAN (Deep Convolutional Generative Adversarial 

Network) is purposefully designed based on the characteristics of American Hyphantria 

cunea larvae net curtain images, which enables the existing dataset to be enhanced, and the 

use of the enhanced dataset to avoid the occurrence of overfitting during training and 

improves the generalization ability of the model.  

 

 

EXPERIMENTAL 
 

Preparation of the Training Set 
The experimentally taken pictures of the partly real net screen are shown in Fig. 1, 

and the resolution of the pictures was 960 × 720. In this paper, a series of real images 

represented in Fig. 1 are cropped into thousands of 64*64 resolution images and manually 

picked and classified. The infected leaf images were sorted out, some of which are shown 

in Fig. 2. In this paper, these images were manually sorted again, and similar net curtain 

images were grouped into a category. There were 12 categories of American Hyphantria 

cunea larvae net curtain images that were sorted out. 

 
The Improvements of the Checkerboard Artifacts 

In the original DCGAN, when the images generated by the deconvolution network 

were carefully observed (Fig. 3(a)), a distinct Checkerboard Artifact (Kingma and Ba 2014; 

Cao et al. 2023) was observed, which is due to the uneven and overlapping pixels of the 

image caused by the deconvolution operation, and the visual transition was not smooth due 

to the different color shades of the adjacent parts of the image. To alleviate the 



 

PEERREVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Teng et al. (2024). “DCGAN enhancement method,” BioResources 19(4), 9271-9284.  9273 

checkerboard effect, in this work the deconvolution layer was eliminated in the original 

DCGAN network and instead a resized convolution layer was used, consisting of an 

upsampling 2D operation and a forward convolution (Conv2D) operation with a step size 

of 1. Figure (3) shows the comparison of the images generated by using resize convolution 

and deconvolution at different epochs. The training process using the original 

deconvolution layer for the upsampling operation is shown in Fig. 3(a), and the training 

process after changing to the resize convolution layer is shown in Fig. 3(b). 

 

         

 

Fig. 1. Real net screen image 

 

      
 

Fig. 2. Infected leaf 

 

 

     

 

     

 

     

 

     
Epoch 1 500 1000 2000 3000 Epoch 1 500 1000 2000 3000 

 

(a)                                  (b) 
Fig. 3. Comparison of training process before and after improvement: (a) images generated using 
deconvolution at different epochs, and (b) images generated using resize convolution at different 
epochs 
 

Table 1. Comparison of FID Indicators for Using Different Convolution Methods  

Using Different Convolution Methods FID Score 

Using resize convolution 147.30 

Using deconvolution 288.41 

 

From Table 1, it can be judged that the use of resize convolution was much better 

than the use of deconvolution. 

 

Measures Related to Improving Network Stability 
To prevent the network from overfitting, to prevent the parameters from relying too 

much on the training data, and to increase the generalization ability of the parameters to 

the dataset, dropout layers were added to both the generator and the discriminator in this 

paper (Srivastava et al. 2014; Park and Kwak 2016). This paper compared the training 

effect of adding the Dropout layer and not adding the Dropout layer, as shown in Fig. 4. 
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(a) Dropout layer (b) No dropout layer added 

 

Fig. 4. Comparison of loss values with (a) and without the dropout layer (b) 

 

Table 2 shows the FID metric score for the images generated with and without 

dropout. 

 

Table 2. Comparison of FID Indicators for Using Different Convolution Methods  

Whether to use Dropout FID Score  

Using dropout 147.30  

Without dropout 148.19  

 

In this paper, different loss functions were used: Binary cross entropy loss, 

Categorical cross entropy loss, KL divergence loss, Mean square error (MSE) loss, and 

Mean absolute error loss. Experiments were conducted using these loss functions 

separately to compare their effects, as shown in Fig. 5. 

 

   
(a) Binary cross entropy loss (b) Categorical cross entropy Loss (c) KL divergence loss 

  

 

(d) Mean square error loss (e) Mean absolute error loss  
 

Fig. 5. Comparison of the effect of different loss functions 

 

From Fig. 5, all the loss functions except the MSE loss function showed gradient 

disappearance when applied. Initially, it was thought that the learning rate was not adjusted 
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properly, which led to anomalies in the training process when using other loss functions, 

but after adjusting the learning rate several times, it was found that the size of the learning 

rate does not affect the result of its gradient vanishing. However, by comparing the use of 

MSE loss with binary cross entropy loss, it was not difficult to find that when using MSE 

loss, the loss value of the generator has two large abrupt changes, which indicates the 

network is less stable. As shown in Fig. 6, it is also clear from its training process that the 

quality of the generated images was very poor when the epoch was either 3200 or 4800. 

As shown in Table 3, by comparing the FID metric score of the generated images 

using MSE loss and Binary cross entropy loss it is also evident that using Binary cross 

entropy loss worked well.  

 

Table 3. Comparison of IS Metrics and FID Metrics for Images Generated by 
Different Loss Functions  

 

After the above comparison, the loss function was finally determined as the binary 

cross entropy loss. This paper used the Adam (Kingma and Ba 2014; Cao et al. 2023) 

algorithm to update the parameters. 

To verify the effect of using LeakyReLU and ReLU, the procedure was modified 

on the activation function only, and the training results are shown in Fig. 7. Figure 7(a) 

shows the image generated when both the generator and discriminator used the ReLU 

function, and Fig. 7(b) shows the image generated when both the generator and 

discriminator used the LeakyReLU function. The change in loss values when using the 

LeakyReLU function and when using the ReLU function is shown in Fig. 8. As shown in 

Fig. 8, the training process of the neural network was more stable when using the 

LeakyReLU function.  

However, when using the ReLU function, images that were different from the 

training data but matched the characteristics of the American white moth screen image 

were generated, as shown in Fig. 9. In other words, training using the ReLU function not 

only expanded the number of datasets, but also expanded the variety of datasets. In this 

paper, LeakyReLU and ReLU functions were used to train and collect the final resulting 

qualified images, respectively. 

Next, BN layers were added at different locations of the generator and discriminator 

to further explore the impact of BN layers. Adding an upsampling layer to the activation 

function was considered. 

 

 
      

Epoch 0 1200 3200 4200 4800 5200 

 

      
Epoch 0 1200 3200 4200 4800 5200 

 

Fig. 6. Images are generated using different loss functions 

 

Using Different Loss Functions FID Score 

Using MSE loss 264.2 

Using binary cross entropy loss 251.7 
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Epoch 0 100 500 1000 1500 2000 2500 3000 3500 4000 

(a) ReLU function is used both in generators and discriminators 

 

          

Epoch 0 100 500 1000 1500 2000 2500 3000 3500 4000 
 
(b) LeakyReLU function is used both in generators and discriminators 
 

Fig. 7. Comparison of the training process using ReLU and LeakyReLU 

 
 

  
(a) Using LeakyReLU function (b) Using ReLU function 

 

Fig. 8. Comparison of loss values trained with LeakyReLU function and ReLU function 

 

       

       
 

Fig. 9. Generated images at training time using the ReLU function 

 

The generator was divided into multiple modules. The convolution layer and the 

activation function layer of the discriminator were treated as two modules. As shown in 

Fig. 10, the loss variation of the network when BN layers are added to the first module, 

second module, third module, and fourth module of the generator network only; to the first 

module, second module, third module, and fourth module of the discriminator network 

only. 

As shown in Fig. 10, the loss value change was anomalous when adding the BN 

layer to the rest of the positions except for adding the BN layer to the second module and 

the third module. Therefore, as shown in Table 4, this work only compares the FID index 

scores of the generated images when the BN layer is added in the second module, the third 

module, and when no BN layer is added. 
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(a) BN layer added to the first 
module of the generator 

(b) BN layer added to the 
second module of the generator 

(c) Add BN layer to the third 
module of the generator 

   

(d) Add BN layer to the 4th 
module of the generator 

(e) BN layer is added to the first 
discriminator module 

(f) BN layer is added to the 
second discriminator module 

  

 

(g) BN layer is added to the 
third discriminator module 

(h) BN layer is added to the 
fourth discriminator module 

 

 

Fig. 10. Variation of loss values when adding BN layers at different locations 

 

Table 4 indicates that the generated image was closest to the real image when BN 

layer was not used. Figure 11 shows the images generated during the training process for 

the three cases, and it can be seen that the addition of the BN layer made the network 

converge more slowly. In summary, the BN layer was not used in this paper. 

 

Gan-generated Image Quality Evaluation Validation 
IS uses a pre-trained Inception network to classify the generated images and 

evaluates how confident the network is in its classifications. High confidence in predictions 

(low entropy) and a wide variety of predicted classes contribute to a higher score. However, 

IS has limitations because it does not directly compare generated images to real ones and 

may give high scores even to low-quality images if they appear diverse.  

FID compares the statistical distribution (mean and covariance) of generated 

images to real images in the feature space of a pre-trained network. A lower FID score 

means the generated images are more similar to real images in terms of quality and 

diversity. FID is widely preferred because it provides a more direct and reliable measure 

of image similarity and quality by accounting for differences in the visual features of both 

datasets. 
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Table 4. FID Scores or Different Cases of Adding BN Layers 

Location of the Added BN layer FID Score 

Add the BN layer to the second module 278.06 

Add the BN layer to the third module 247.97 

No BN layer is used 147.29 

 

Fig. 11. The training process for different cases of adding BN layers 
 

The GAN has two evaluation metrics: the IS metric and the FID metric. The IS 

metric scores a single dataset by comparing it to a single dataset, with larger values 

indicating higher image quality and category richness. the FID gives a score by comparing 

the real image to the generated image, with lower scores indicating that the generated image 

is closer to the real image. 

The specificity of the American Hyphantria cunea larvae net curtain images is 

illustrated in Fig. 6. The images shown in Fig. 6 belong to a certain class of training set, in 

which the images are relatively very similar. But even so, when the images in the training 

set shown in Fig. 1 were divided into two parts and their FID scores were evaluated, the 

FID scores were still as high as 122. To explore further, the paper used the same method 

described above for other category datasets and evaluated their FID scores. It was finally 

found that the FID scores between different images in the training set of the same category 

ranged from 100 to 350. 

 

      

      

                                                                      

Fig. 12. Images contained in a certain type of training set 

 
Improved Generative and Discriminative Networks 

LeakyReLU was used as the activation function at the end of each resize 

convolution layer in the hidden layer. The structure of the generator network is shown in 

 
 
 

       
        

Epoch 0 400 1000 2000 3000 4000 5000 
(a) BN layer added to the second module 

 

       
Epoch 0 400 1000 2000 3000 4000 5000 

(b) BN layer added to the third module 
 

       
Epoch 0 400 1000 2000 3000 4000 5000 

(c) No BN layer is used 
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Fig. 13(a), and the structure of the discriminator network is shown in Fig. 13(b). The 

architecture of the generator and discriminator are shown in Fig. 14(a) and Fig. 14(b), 

respectively. 
 

 

 

(a) Generator network structure (b) Discriminator network structure 

Fig. 13. Generator network structure 

 

  

(a) The architecture of generators generator 
network 

(b) The architecture of the discriminator 
network 

 

Fig. 14. Architecture of the generator and discriminator 
 
 

Experimental Platform and Parameter Settings 
The computer operating system used in this paper was Windows 64bit system, and 

the hardware used in this experiment was Intel(R) Core(TM) i76700 CPU, 16 GB RAM, 

and NVIDIA GeForce RTX 2080 Ti 14 GB, and the software environment is TensorFlow 

GPU 2.0.0 (Google LLC; Mountain View, CA, USA) and Keras 2.3.1 (Google LLC; 

Mountain View, CA, USA). The batch size of the training process was set to 64, and the 
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LeakyReLU slope parameter was set to 0.2. The learning rate of the optimizer Adam was 

set to 1e05, the parameter beta_1 was set to 0.5, and epsilon was set to 1e05. 

 

 

RESULTS AND DISCUSSION 
 

The training process is shown in Fig. 15. The comparison between the generated 

image and the original image is shown in Fig. 16. 

 
 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

 

       

Epoch 0 100 1000 2000 3000 4000 5000 
 

Fig. 15. GAN training process 
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(a) Original images 

         
(b) Generate images 

 

Fig. 16. Comparison of the generated images with the original images 

 

The expanded images were picked separately to remove the images with too high 

repetition to obtain twelve categories of expanded datasets, at which time the expanded 

datasets reached the 20,000 level, and there were no real images from the original collection 

in the expanded datasets. Using this dataset to train the net curtain recognition algorithm 

based on the convolutional neural network proposed in the literature (Gao et al. 2020), the 

recognition results of the trained algorithm for real net curtain images are shown in Fig. 

17. 
 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

     
(k) (l) (m) (n) (o) 

     

(p) (q) (r) (s) (t) 
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(u) (v) (w) (x)  
     
Fig. 17. Recognition effect diagram 
 

The recognition results showed that the image recognition algorithm trained using 

the expanded net curtain dataset of this method can achieve good recognition under 

different scenes and lighting conditions. The expanded mesh dataset includes the expanded 

images obtained by training the GAN with four cropped images from Fig. 17(a) through 

(k), excluding the image parts in (l) through (x). The recognition images (a) through (k) 

achieved a high accuracy rate, which shows that the images generated by the algorithm met 

the requirements and reached the quality standards. Figures 17(l) through (x) also obtained 

high recognition rates, indicating that the expansion of the dataset improved the 

generalization ability to recognize the localized mesh curtain. Figures 17(d) and (e) are 

images taken at different angles, and (j) was obtained from (k) after flipping. All four 

images achieved good recognition results, which indicates that the algorithm has a strong 

generalization ability for the recognition of images at different angles after training with 

the expanded dataset. 

 

Future Directions in Pest Control 
The current trajectory of pest control in agriculture is heavily influenced by 

advancements in deep learning and image processing. Key future developments include 

refining image generation algorithms, integrating multimodal data sources, enabling real-

time deployment, addressing ethical and environmental concerns, and fostering 

collaborative research efforts. Embracing these avenues will lead to more effective and 

sustainable pest management practices in agriculture. 

 

 
CONCLUSIONS 
 

1. Improved DCGAN for Dataset Expansion: An image data enhancement algorithm 

based on improved DCGAN (Deep Convolutional Generative Adversarial Network) 

was proposed to expand the American Hyphantria cunea larvae net curtain dataset. The 

collected original images were cropped to a resolution of 64 × 64 to handle the large 

resolution and complex composition of the larvae net curtain images. 

2. Training for Color Differences: Images with significant color differences under various 

conditions were trained separately, ensuring the expanded dataset maintained high 

image quality. 

3. Algorithm Optimization: The deconvolution layer was eliminated, and a resize 

convolution layer was introduced to reduce the checkerboard effect and accelerate 

training. A dropout layer was added to improve the stability of training. Using the 

LeakyReLU function instead of the ReLU function avoided neuron necrosis. 
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4. Enhanced Neural Network Generalization: The improved DCGAN network was 

trained to generate the final expanded dataset. Using this dataset to train existing 

recognition algorithms significantly improved the generalization ability of the neural 

network, achieving high recognition accuracy. 
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