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The fall webworm (Hyphantria cunea) poses a significant threat to
agriculture, as its larvae feed on leaves and form silken webs, which can
severely impact plant growth. However, the lack of specific image datasets
for the larvae’s webs hinders the use of image recognition technologies in
pest prevention and control. To address this issue, an enhancement
method is proposed here based on an improved Deep Convolutional
Generative Adversarial Network (DCGAN). This method generates a
diverse set of high-quality web images, significantly expanding the existing
dataset. Experimental results demonstrated that this enhanced dataset
improved the robustness of recognition networks, enabling better
automatic identification and precision spraying to control Hyphantria
cunea. This approach not only advances automated pest monitoring in
agriculture but also offers new possibilities for applying similar
technologies to the identification of other plant pests.
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INTRODUCTION

The American Hyphantria cunea, also known as the autumn curtain moth, is a key
target for forestry control because of its high reproduction rate and rapid spread (Yang et
al. 2008). The damage of American H. cunea is primarily caused by larvae feeding on
leaves, and the larvae start to feed a few hours after hatching and spit out silk and form a
net curtain. The whole larval stage feeds heavily, causing low resilience of the tree and
even death of the whole plant in severe cases (Haijun et al. 2006). The larval stage has a
clear net curtain, which becomes the best period for control. Chemical control is currently
the most effective method. The common way is to manually spray the chemical agent on a
large scale. However, this method is inefficient and causes serious environmental pollution.
There is an urgent need for the emergence of an intelligent spraying technology to achieve
accurate automated on target spraying operations. Accurate target identification is a
prerequisite for achieving on-target spraying. In recent years, with the development of
neural networks, many deep learning-based methods have been widely promoted and
applied in the field of pest and disease identification in agriculture and forestry, while deep
learning algorithms require huge data sets as training support (Ding et al. 2019). For the
acquiring of images of American H. cunea larvae net curtains, there are problems, such as
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the difficulty of acquiring images of net curtains in higher and deeper parts of the bush,
high manual acquisition workload, and large differences in images under different lighting
conditions, which make it difficult to form a sufficiently large database.

To expand the original dataset and enhance the generalization ability of neural
network models (Yang and Li 2021), many methods have been proposed. Some literature
presented enhanced datasets using geometric transformations of the original images
(including various operations such as deformation, cropping, mirroring, scaling, and
rotation) (De Andrade 2019); some literature adjusted the brightness and contrast of the
original images randomly or added random noise to the original images, increasing the
number of samples in the dataset (Lopes et al. 2017), using the method of adding Gaussian
noise to the images to generate new images; some other literature adopted the method of
randomly intercepting or randomly masking a part of the images (Sun et al. 2017), using
the replacement of different regions of the images to generate new images. These methods
do not take full advantage of the intrinsic characteristics of the original samples, resulting
in a trained neural network model with limitations and poor generalization ability. To solve
this problem, automatic image generation was created and in 2004, a method to generate
new datasets using neural networks was first proposed in the literature (Zhou and Jiang
2004). Since then, it has been one of the key research directions in the field of machine
vision (Radford et al. 2015; Isola et al. 2016; Grant-Jacob et al. 2022). Meanwhile, the
rapid development of deep learning has greatly facilitated the development of image
generation techniques. The proposal of Generative Adversarial Networks (GAN) provides
a completely new solution (Goodfellow et al. 2014). The GAN has been continuously
improved and has been applied in many fields such as generating audio (Yamamoto et al.
2019), high resolution images (Karras et al. 2017), and image style conversion (Yang et
al. 2022). In this paper, an improved DCGAN (Deep Convolutional Generative Adversarial
Network) is purposefully designed based on the characteristics of American Hyphantria
cunea larvae net curtain images, which enables the existing dataset to be enhanced, and the
use of the enhanced dataset to avoid the occurrence of overfitting during training and
improves the generalization ability of the model.

EXPERIMENTAL

Preparation of the Training Set

The experimentally taken pictures of the partly real net screen are shown in Fig. 1,
and the resolution of the pictures was 960 x 720. In this paper, a series of real images
represented in Fig. 1 are cropped into thousands of 64*64 resolution images and manually
picked and classified. The infected leaf images were sorted out, some of which are shown
in Fig. 2. In this paper, these images were manually sorted again, and similar net curtain
images were grouped into a category. There were 12 categories of American Hyphantria
cunea larvae net curtain images that were sorted out.

The Improvements of the Checkerboard Artifacts

In the original DCGAN, when the images generated by the deconvolution network
were carefully observed (Fig. 3(a)), a distinct Checkerboard Artifact (Kingma and Ba 2014;
Cao et al. 2023) was observed, which is due to the uneven and overlapping pixels of the
image caused by the deconvolution operation, and the visual transition was not smooth due
to the different color shades of the adjacent parts of the image. To alleviate the
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checkerboard effect, in this work the deconvolution layer was eliminated in the original
DCGAN network and instead a resized convolution layer was used, consisting of an
upsampling 2D operation and a forward convolution (Conv2D) operation with a step size
of 1. Figure (3) shows the comparison of the images generated by using resize convolution
and deconvolution at different epochs. The training process using the original
deconvolution layer for the upsampling operation is shown in Fig. 3(a), and the training
process after changing to the resize convolution layer is shown in Fig. 3(b).

Epoch 1 500 1000 2000 3000 Epoch 1 500 1000 2000 3000

(@) (b)
Fig. 3. Comparison of training process before and after improvement: (a) images generated using
deconvolution at different epochs, and (b) images generated using resize convolution at different
epochs

Table 1. Comparison of FID Indicators for Using Different Convolution Methods

Using Different Convolution Methods FID Score
Using resize convolution 147.30
Using deconvolution 288.41

From Table 1, it can be judged that the use of resize convolution was much better
than the use of deconvolution.

Measures Related to Improving Network Stability

To prevent the network from overfitting, to prevent the parameters from relying too
much on the training data, and to increase the generalization ability of the parameters to
the dataset, dropout layers were added to both the generator and the discriminator in this
paper (Srivastava et al. 2014; Park and Kwak 2016). This paper compared the training
effect of adding the Dropout layer and not adding the Dropout layer, as shown in Fig. 4.
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Fig. 4. Comparison of loss values with (a) and without the dropout layer (b)

Table 2 shows the FID metric score for the images generated with and without
dropout.

Table 2. Comparison of FID Indicators for Using Different Convolution Methods

Whether to use Dropout FID Score
Using dropout 147.30
Without dropout 148.19

In this paper, different loss functions were used: Binary cross entropy loss,
Categorical cross entropy loss, KL divergence loss, Mean square error (MSE) loss, and
Mean absolute error loss. Experiments were conducted using these loss functions
separately to compare their effects, as shown in Fig. 5.
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Fig. 5. Comparison of the effect of different loss functions

From Fig. 5, all the loss functions except the MSE loss function showed gradient
disappearance when applied. Initially, it was thought that the learning rate was not adjusted
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properly, which led to anomalies in the training process when using other loss functions,
but after adjusting the learning rate several times, it was found that the size of the learning
rate does not affect the result of its gradient vanishing. However, by comparing the use of
MSE loss with binary cross entropy loss, it was not difficult to find that when using MSE
loss, the loss value of the generator has two large abrupt changes, which indicates the
network is less stable. As shown in Fig. 6, it is also clear from its training process that the
quality of the generated images was very poor when the epoch was either 3200 or 4800.

As shown in Table 3, by comparing the FID metric score of the generated images
using MSE loss and Binary cross entropy loss it is also evident that using Binary cross
entropy loss worked well.

Table 3. Comparison of IS Metrics and FID Metrics for Images Generated by
Different Loss Functions

Using Different Loss Functions FID Score
Using MSE loss 264.2
Using binary cross entropy loss 251.7

After the above comparison, the loss function was finally determined as the binary
cross entropy loss. This paper used the Adam (Kingma and Ba 2014; Cao et al. 2023)
algorithm to update the parameters.

To verify the effect of using LeakyRelL U and RelLU, the procedure was modified
on the activation function only, and the training results are shown in Fig. 7. Figure 7(a)
shows the image generated when both the generator and discriminator used the RelLU
function, and Fig. 7(b) shows the image generated when both the generator and
discriminator used the LeakyReL U function. The change in loss values when using the
LeakyReLU function and when using the ReLU function is shown in Fig. 8. As shown in
Fig. 8, the training process of the neural network was more stable when using the
LeakyReL U function.

However, when using the ReLU function, images that were different from the
training data but matched the characteristics of the American white moth screen image
were generated, as shown in Fig. 9. In other words, training using the ReL.U function not
only expanded the number of datasets, but also expanded the variety of datasets. In this
paper, LeakyReLU and ReLU functions were used to train and collect the final resulting
qualified images, respectively.

Next, BN layers were added at different locations of the generator and discriminator
to further explore the impact of BN layers. Adding an upsampling layer to the activation

function was considered.
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Fig. 6. Images are generated using different loss functions
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Fig. 8. Comparison of loss values trained with LeakyReLU function and ReLU function

Fig. 9. Generated images at training time using the ReLU function

The generator was divided into multiple modules. The convolution layer and the
activation function layer of the discriminator were treated as two modules. As shown in
Fig. 10, the loss variation of the network when BN layers are added to the first module,
second module, third module, and fourth module of the generator network only; to the first
module, second module, third module, and fourth module of the discriminator network
only.

As shown in Fig. 10, the loss value change was anomalous when adding the BN
layer to the rest of the positions except for adding the BN layer to the second module and
the third module. Therefore, as shown in Table 4, this work only compares the FID index
scores of the generated images when the BN layer is added in the second module, the third
module, and when no BN layer is added.
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Fig. 10. Variation of loss values when adding BN layers at different locations

Table 4 indicates that the generated image was closest to the real image when BN
layer was not used. Figure 11 shows the images generated during the training process for
the three cases, and it can be seen that the addition of the BN layer made the network
converge more slowly. In summary, the BN layer was not used in this paper.

Gan-generated Image Quality Evaluation Validation

IS uses a pre-trained Inception network to classify the generated images and
evaluates how confident the network is in its classifications. High confidence in predictions
(low entropy) and a wide variety of predicted classes contribute to a higher score. However,
IS has limitations because it does not directly compare generated images to real ones and
may give high scores even to low-quality images if they appear diverse.

FID compares the statistical distribution (mean and covariance) of generated
images to real images in the feature space of a pre-trained network. A lower FID score
means the generated images are more similar to real images in terms of quality and
diversity. FID is widely preferred because it provides a more direct and reliable measure
of image similarity and quality by accounting for differences in the visual features of both
datasets.
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Table 4. FID Scores or Different Cases of Adding BN Layers

Location of the Added BN layer FID Score
Add the BN layer to the second module 278.06
Add the BN layer to the third module 247.97
No BN layer is used 147.29
Epoch 1000 2000 3000 4000 5000

a BN Iayer added to the second module

g

ﬁ? .”
Epoch 400 1000 2000 3000 4000 5060
ib‘ BN Iaier added to theth|rd module .

Epoch 1000 2000 3000 4000 5000
(c) No BN layer is used

Fig. 11. The training process for different cases of adding BN layers

The GAN has two evaluation metrics: the 1S metric and the FID metric. The IS
metric scores a single dataset by comparing it to a single dataset, with larger values
indicating higher image quality and category richness. the FID gives a score by comparing
the real image to the generated image, with lower scores indicating that the generated image
is closer to the real image.

The specificity of the American Hyphantria cunea larvae net curtain images is
illustrated in Fig. 6. The images shown in Fig. 6 belong to a certain class of training set, in
which the images are relatively very similar. But even so, when the images in the training
set shown in Fig. 1 were divided into two parts and their FID scores were evaluated, the
FID scores were still as high as 122. To explore further, the paper used the same method
described above for other category datasets and evaluated their FID scores. It was finally
found that the FID scores between different images in the training set of the same category

ranged from 100 to 350.

Fig. 12. Images contained in a certain type of training set

Improved Generative and Discriminative Networks
LeakyReLU was used as the activation function at the end of each resize
convolution layer in the hidden layer. The structure of the generator network is shown in
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Fig. 13(a), and the structure of the discriminator network is shown in Fig. 13(b). The
architecture of the generator and discriminator are shown in Fig. 14(a) and Fig. 14(b),
respectively.
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Fig. 14. Architecture of the generator and discriminator

Experimental Platform and Parameter Settings

The computer operating system used in this paper was Windows 64bit system, and
the hardware used in this experiment was Intel(R) Core(TM) 176700 CPU, 16 GB RAM,
and NVIDIA GeForce RTX 2080 Ti 14 GB, and the software environment is TensorFlow
GPU 2.0.0 (Google LLC; Mountain View, CA, USA) and Keras 2.3.1 (Google LLC;
Mountain View, CA, USA). The batch size of the training process was set to 64, and the

Teng et al. (2024). “DCGAN enhancement method,” BioResources 19(4), 9271-9284. 9279



PEERREVIEWED ARTICLE bioresources.cnr.ncsu.edu

LeakyReL U slope parameter was set to 0.2. The learning rate of the optimizer Adam was
set to 1e05, the parameter beta_1 was set to 0.5, and epsilon was set to 1e05.

RESULTS AND DISCUSSION

The training process is shown in Fig. 15. The comparison between the generated
image and the original image is shown in Fig. 16.
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Fig. 16. Comparison of the generated images with the original images

The expanded images were picked separately to remove the images with too high
repetition to obtain twelve categories of expanded datasets, at which time the expanded
datasets reached the 20,000 level, and there were no real images from the original collection
in the expanded datasets. Using this dataset to train the net curtain recognition algorithm
based on the convolutional neural network proposed in the literature (Gao et al. 2020), the
recognition results of the trained algorithm for real net curtain images are shown in Fig.
17.
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Fig. 17. Recognition effect diagram

The recognition results showed that the image recognition algorithm trained using
the expanded net curtain dataset of this method can achieve good recognition under
different scenes and lighting conditions. The expanded mesh dataset includes the expanded
images obtained by training the GAN with four cropped images from Fig. 17(a) through
(k), excluding the image parts in (l) through (x). The recognition images (a) through (k)
achieved a high accuracy rate, which shows that the images generated by the algorithm met
the requirements and reached the quality standards. Figures 17(1) through (x) also obtained
high recognition rates, indicating that the expansion of the dataset improved the
generalization ability to recognize the localized mesh curtain. Figures 17(d) and (e) are
images taken at different angles, and (j) was obtained from (k) after flipping. All four
images achieved good recognition results, which indicates that the algorithm has a strong
generalization ability for the recognition of images at different angles after training with
the expanded dataset.

Future Directions in Pest Control

The current trajectory of pest control in agriculture is heavily influenced by
advancements in deep learning and image processing. Key future developments include
refining image generation algorithms, integrating multimodal data sources, enabling real-
time deployment, addressing ethical and environmental concerns, and fostering
collaborative research efforts. Embracing these avenues will lead to more effective and
sustainable pest management practices in agriculture.

CONCLUSIONS

1. Improved DCGAN for Dataset Expansion: An image data enhancement algorithm
based on improved DCGAN (Deep Convolutional Generative Adversarial Network)
was proposed to expand the American Hyphantria cunea larvae net curtain dataset. The
collected original images were cropped to a resolution of 64 x 64 to handle the large
resolution and complex composition of the larvae net curtain images.

2. Training for Color Differences: Images with significant color differences under various
conditions were trained separately, ensuring the expanded dataset maintained high
image quality.

3. Algorithm Optimization: The deconvolution layer was eliminated, and a resize
convolution layer was introduced to reduce the checkerboard effect and accelerate
training. A dropout layer was added to improve the stability of training. Using the
LeakyReLU function instead of the ReLU function avoided neuron necrosis.
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4. Enhanced Neural Network Generalization: The improved DCGAN network was
trained to generate the final expanded dataset. Using this dataset to train existing
recognition algorithms significantly improved the generalization ability of the neural
network, achieving high recognition accuracy.
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