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The thermal conductivity was measured for Al2Oz nanofluid using a newly
developed polymeric base fluid. The novel base fluid of cross-linked
polyacrylic acid (PAA) solutions was synthesized via radical polymerization
using a distinct deep eutectic solvent (DES). Five weight concentrations of
Al203 nanoparticles, 0.05, 0.10, 0.15, 0.20, and 0.25 wt%, were dispersed
in the polymeric fluid via two dispersing techniques. In the first step, the
nanoparticles were stirred using magnetic stirring for 1 h, followed by the
sonication technique for another hour to ensure the nanoparticles were well
suspended in the base fluid. A KD2 Pro thermal analyzer measured the
thermal conductivity of each concentration for the temperature from 30 to
70 °C. The experimental data demonstrated a correlation between thermal
conductivity and nanoparticle weight fraction. The results showed that the
thermal conductivity increased with the increment of Al2Os concentration
for all set temperatures. The study revealed that the polymeric base fluid
could replace the conventional base fluid since the thermal conductivity
results were comparable with those reported in the literature.
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INTRODUCTION

The term “nanofluid” was first used in 1995 by Choi and Eastman (1995) to
characterize a mixture of tiny particles suspended in ordinary liquids such as ethylene
glycol, water, or oil. Since then, researchers have shown interest in the thermal and fluid
sciences related to such fluids. In thermal engineering, nanofluids have been applied to
solar energy, nuclear reactors, medicinal applications, vehicles, and electronic equipment
(Saidur et al. 2011; Mahian et al. 2013; Surakasi et al. 2021). Switching to nanofluids from
conventional heat transfer fluids is desirable since the conventional fluids have lower
thermal conductivity than the nanofluids when incorporating solid nanoparticles (Ali et al.
2022; Venkataramana et al. 2022). Employing a fluid with a higher thermal conductivity
accelerates the heat transfer pace and creates a smaller system or device. According to the
literature review, one of the most often employed nanoparticles for creating nanofluids is
aluminum oxide (Al203) (Gao et al. 2020; Joseph Arun Prasath et al. 2023).
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Research on the thermal conductivity of nanofluids containing Al2O3 nanoparticles
has been reviewed in the literature. Types of base fluids and concentration of Al2Os
significantly impact the thermal conductivity result. Research shows that increasing the
concentration of Al20s nanoparticles in water can substantially enhance the thermal
conductivity of the nanofluid (Chintala et al. 2020). A study by Kwek et al. (2010) shows
that adding 1 to 5% volume fraction of Al203 nanoparticles in water can increase the
effective thermal conductivity by 6% to 20% at room temperature. Xiang et al. (2019) also
demonstrated an 18% increase in thermal conductivity with a 1% volume fraction of Al2Os
in mineral oil-based nanofluids. Similarly, Settino et al. (2022) showed that the use of
synthetic oil-Al20s nanofluid led to a 7.6% increase in the thermal efficiency of the
receiver, indicating a positive impact of nanofluids on thermal properties. Wanatasanappan
et al. (2022) found that a palm oil-based nanofluid with a 0.6% mass concentration of Al20s3
hybrid nanoparticles exhibited a 27.5% enhancement in thermal conductivity.

The variation of nanofluid thermal conductivity has also been studied by Mostafizur
et al. (2014). The study involved the production of nanofluids by dispersing Al.Os
nanoparticles in methanol as the base fluid, with nanoparticle volume fractions of 0.05%,
0.01%, 0.5%, 0.1%, and 0.15%. Their finding revealed that the thermal conductivity of the
methanol-based nanofluids increased with higher particle volume fractions, and this
thermal conductivity was compared to that of pure methanol. Across all concentrations,
AlOs/methanol nanofluids displayed higher thermal conductivity compared to pure
methanol, with an overall increase of approximately 28%. In a separate study, Srinivasan
et al. (2021) demonstrated that Al.Os/ethylene glycol nanofluids provide greater heat
transfer enhancement compared to Al.Os/water nanofluids. Similarly, Kumar and Sahoo
(2019) observed that the thermal conductivity of Al.Os hybrid nanofluids varies between
ethylene glycol and propylene glycol (PG) base fluids.

This indicates that the choice of base fluid is crucial, as it significantly impacts the
thermal properties and performance of the nanofluid. Consequently, there is growing
interest in exploring nanofluids by dispersing AlOs in non-conventional base fluids. To
date, no studies have reported on the thermal conductivity of polymer solution-based
nanofluids. Therefore, in this recent study, a crosslinked polyacrylic acid (PAA) solution
was synthesized using deep eutectic solvent (DES) (Fauzi et al. 2023) as the solvent. DES
was employed to reduce the freezing point of the nanofluid. As a result, the polymer
solution-based nanofluid, in contrast to those with conventional base fluids, is able to
remain in a liquid state for a wide range of temperatures, including those below 0 °C,
without undergoing crystal formation or freezing, thus preserving its physical properties.
The cross-linked structure of the polymer, on the other hand, facilitates conductive heat
transfer. Meanwhile, the bonding formed between nanoparticles and PAA molecules
creates a heat-conductive pathway, enhancing the heat transfer performance of the
nanofluid system. Apart from that, these bonds can prevent the non-uniform dispersion of
the nano-filler in the polymer matrix. These provide significant advantages for the newly
developed base fluid over conventional base fluids.

EXPERIMENTAL

Materials
N,N-Diethylethanolammonium chloride and ethylene glycol, supplied by Nacalai
Tesque (Japan), were used to produce DES, with respective commercial-grade purities of
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99.8% and 98%. Al2Os nanoparticles, with a size of less than 50 nm, were supplied by
Merck company (Germany). The other materials utilized in this experiment were sourced
from Sigma Aldrich.

Base Fluid Preparation

Cross-linked PAA solution was produced through a radical polymerization method.
The polymerization procedure was carried out in two steps. The first step was to form
solution A, followed by the formation of solution B in the second step. To prepare solution
A, purified acrylic acid monomer (AA) was dissolved in DES without heating. While in a
separate beaker, the same quantity of DES was used to dissolve APS. The APS/DES
solution was mixed into the AA/DES solution and stirred using a mechanical stirrer at 300
rpm for 30 min. This reaction was carried out on a heating plate at 65 °C.

MBA was added to solution A. Stirring was continued with the same mechanical
stirrer speed and temperature. The resulting mixture was solution B, which is a cross-linked
PAA solution. Since the desired amount of cross-linked structure was low, the amount of
MBA added to solution A was varied. Apart from that, the amount of AA and the reaction
time were also changed. The polymerization reaction was stopped via the quench technique
by adding 1.0 mL of 2% hydroquinone solution into solution B at the end of the reaction
time. Immediately after inhibition, solution B was immersed in an ice-water mixture for 10
min. This solution was kept cold before undergoing analysis.

Nanofluid Preparation

A special dispersion technique of nanoparticles was required to create a suspension
with acceptable stability. This was necessary to avoid sedimentation and agglomeration of
nanoparticles in the base fluid. Nanofluid was prepared by dispersing Al20s nanoparticles
in the synthesized cross-linked PAA solution at concentrations of 0.05, 0.10, 0.15, 0.20,
and 0.25 wt%. Nanoparticles were weighed to the respective concentrations and were
gradually added to the PAA solution. The mixture was stirred using a magnetic stirrer for
1 h. Afterward, the suspension was sonicated for another hour using a probe sonicator to
break down the agglomeration of nanoparticles. Utilizing these two dispersion steps
resulted in more stable and uniform nanofluids. No sedimentation in the sample was
observed with physical observation for more than 7 d.
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Fig. 1. Schematic diagram of the KD2 Pro thermal properties analyzer
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Measurement of Thermal Conductivity

The thermal conductivity of PAA/AI20O3 nanofluids at various concentrations and
temperatures ranging from 30 to 70 °C was measured using a KD2 Pro instrument, which
operates based on the transient hot wire method. The KD2 Pro takes measurements every
second over a 90-second cycle, with an accuracy of £ 5%. Each sample was tested three
times, and the average value was recorded. A hot water bath was employed to maintain a
stable temperature, and a thermometer with an accuracy of 0.1 °C was used for temperature
measurement. Figure 1 is a schematic diagram of thermal conductivity measurement using
a KD2 Pro thermal analyzer.

RESULTS AND DISCUSSION

The thermal conductivity test was conducted on the base fluid (cross-linked PAA
solution) without nanoparticles. The results were compared with the thermal conductivity
of the nanofluid at nanoparticle concentrations ranging from 0.05 to 0.25 wt% and
temperatures varying from 30 to 70 °C. The thermal conductivity of the cross-linked PAA
solution at 0 wt% Al203 nanoparticles was 0.176 W/m.K at the initial temperature of
30 °C. However, adding nanosolid materials (Al2O3 nanoparticles) with higher thermal
conductivity (30 W/m.K) can enhance the thermal conductivity of the produced nanofluid
(Selvarajoo et al. 2024). The PAA-AI203 nanofluids showed a faster thermal response
compared to the PAA solution without nanoparticles, achieving a 7% increase in thermal
conductivity with the addition of 0.05 wt% Al20s. The addition of 0.10 wt% Al20s3
increased the thermal conductivity by 8%. Similarly, at Al2Os concentrations of 0.15, 0.20,
and 0.25 wt%, the thermal conductivity increased by 11%, 16%, and 22%, respectively,
compared to the thermal conductivity of the PAA solution without Al20s at the test
temperature of 30 °C. At 40 °C, the thermal conductivity of 0 wt% nanoparticle was 0.177
W/m.K. By dispersing 0.05, 0.10, 0.15, 0.20, and 0.25 wt% Al203 nanoparticles into the
PAA solution, the thermal conductivity increased by 7%, 10%, 14%, 20%, and 28%,
respectively. The study continued at 50 °C, where the initial thermal conductivity at 0 wt%
nanoparticle was 0.180 W/m.K, and it increased by 9%, 13%, 19%, 28%, and 38% when
Al203 nanoparticles were dispersed into the base fluid at the same nanoparticle
concentrations. The increments in thermal conductivity at this temperature were higher
compared to 30 and 40 °C.
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Fig. 2. Overall result for the thermal conductivity of PAA/AI203 nanofluids with respect to changes
in Al203 nanoparticle concentration
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To demonstrate the effect of Al2Os nanoparticles on the thermal conductivity of
nanofluids, the study continued at higher temperatures of 60 and 70 °C. The heat transfer
rate of nanofluids was faster at higher temperatures, with the thermal conductivity of
nanofluids increasing by 13%, 21%, 31%, 44%, and 60% at 60 °C, while 17%, 29%, 44%,
62%, and 78% at 70 °C, respectively, for the same nanoparticle concentrations. The data
collected showed that the thermal conductivity of nanofluids increased with the presence
of high thermal conductivity nanoparticles. The thermal conductivity further increased
with increasing nanoparticle concentrations at all temperature conditions. Figure 2 shows
the overall values of thermal conductivity enhancement for each nanofluid concentration.

Understanding the heat transfer mechanism in the polymer structure is important to
provide insight into the heat transfer occurring in the nanofluid. Cross-linking is the bonds
or sequences of short bonds that connect one polymer chain (PAA) to another through
covalent bonds, making the PAA molecular structure rigid (Mo et al. 2024). Polyacrylic
acid ‘solution’ refers to PAA with a low cross-linking degree, keeping the PAA in a
solution state rather than a solid (Nardinocchi et al. 2024). The bonding between PAA
chains always occurs irregularly, so the cross-linked PAA molecular structure is entirely
amorphous and disordered (no dense lattice-like crystalline polymers). When a heat source
is present, the heat will first reach the surface of the molecule closest to the heat source.
This heat is then transferred to the adjacent molecule and then to the next molecule. In this
condition, the heat does not propagate as a wave but slowly diffuses through the PAA
network, causing irregular vibrations and rotations of all PAA molecules around their
equilibrium positions and spreading to adjacent chains (Burger et al. 2016). These
vibrations and rotations of the molecules will cause phonon scattering. Phonons are
quantized lattice vibration waves that are the main carriers of thermal energy, contributing
to heat capacity and conductive heat transfer in the condensed phase. They play an
important role in the conversion of thermal energy (Yang et al. 2023). Figure 3 illustrates
the amorphous structure of PAA and its heat transfer mechanism.
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Fig. 3. Mechanism of thermal conductivity in amorphous polymers

A good thermal conductor has molecules arranged in an orderly manner, which can
resemble crystalline polymers. However, the molecular arrangement of cross-linked PAA
solution is disordered and amorphous. To understand the mechanism of good or poor
thermal conductivity, Newton’s pendulum is used as an example to understand the thermal
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conductivity of the PAA solution and compare it to the thermal conductivity of crystalline
polymers (Chandrashekar et al. 2023). Figure 4 shows Newton's pendulum moved in an
orderly manner, representing crystalline polymers (a), and a disordered movement of the
pendulum representing cross-linked PAA solution (amorphous) (b). This figure illustrates
the aspect of molecular vibrations in both structures. The ordered structure (a) will transfer
the initial vibration to the opposite or adjacent surface quickly because the molecules are
closely and orderly arranged. Conversely, in arrangement (b), the initial kinetic energy
mostly scatters chaotically to other molecular structures due to the disordered arrangement
of molecules, causing vibrations in each ball or molecule. Through the mechanism shown
in Fig. 4, it can be summarized that the heat transfer technique involved in polymer
molecules is conductive heat transfer.

7T — T
. I~/

Fig. 4. Comparison of Newton's pendulum for the thermal conductivity of crystalline polymers (a)
and amorphous polymers (b)

The morphology of the PAA structure suggests that it may not be effective for heat
transfer through conduction. The amorphous aspect of the polymer, when viewed in the
context of thermal conductivity, has weaknesses such as slow heat transfer. The disordered
polymer chains prevent thermal energy from being quickly transferred across the polymer.
This disorganized and random orientation contributes to phonon scattering, which causes
thermal resistance and can lower the thermal conductivity of a material (He and Wang
2021). Therefore, the thermal conductivity of the cross-linked PAA solution at 0 wt%
nanoparticles is low with the value 0.176 W/m.K.

Conversely, when nanoparticles are dispersed into the PAA solution, the thermal
conductivity of the nanofluid increases. The increment of thermal conductivity due to the
presence of nanoparticles results from the formation of conductive heat paths of Al2Os
nanoparticles throughout the PAA matrix, where these paths play a crucial role in phonon
transfer (Chandrashekar et al. 2023). Phonon transfer occurs with non-covalent interactions
such as ion bonding, hydrogen bonding, Van der Waals forces, or 7-n interactions between
the polymer matrix and the nano-filler (Kim and Choi 2021). These bonds can enhance the
interface adhesion between the polymer matrix and the nano-filler (Jiao et al. 2023). Strong
adhesion is essential to reduce interfacial resistance that can impede heat transfer in
nanofluids. Moreover, these bonds can prevent non-uniform dispersion of the nano-filler,
as this condition can lead to phonon scattering (Yang et al. 2021), which may result in
reduced thermal conductivity, as illustrated in Fig. 5 (Awais et al. 2021). Therefore, the
homogeneous and uniform dispersion of nanoparticles in the polymer matrix is another key
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factor in minimizing phonon scattering to achieve effective path flows of the nano-filler
for heat transfer and facilitate efficient thermal energy transfer (Gordon et al. 2014).
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Fig. 5. Phonon scattering resulting from uneven nanoparticle arrangement.
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Fig. 7. Mechanism of thermal energy transfer from the PAA matrix to Al203 nanoparticles
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The bond formation between PAA and Al203 is a hydrogen bond. Through this
hydrogen bonding, the contact area between PAA and Al20s is large and minimizes heat
resistance by reducing phonon scattering (Olmo et al. 2019). In this scenario, phonon
transport is efficient, facilitating thermal energy transfer in the nanofluids. Therefore, as
nanoparticle concentration increases, more hydrogen bonds form between PAA and Al20z.
This allows for better phonon transfer and faster heat transfer, resulting in increased
thermal conductivity of the nanofluid. Figure 6 illustrates the formation of hydrogen bonds
between Al20s and the PAA matrix, while Fig. 7 shows the heat transfer from the PAA
matrix to Al2Os nanoparticles.

CONCLUSIONS

1. It was found that the thermal conductivity of polymeric nanofluid increased between
7% to 78% with the increment of concentration of nanoparticles for each temperature
that was considered.

2. The study suggests that the heat transfer mechanism in the newly developed polymeric
nanofluid is primarily conductive.

3. Interaction between Al203 nanoparticles and poly(acrylic acid) (PAA) molecules
enabled the formation of heat-conductive pathways, which could enhance heat transfer
within the nanofluid and help prevent nanoparticle agglomeration.

4. Thermal conductivity values of newly developed nanofluid showed comparable results
with the nanofluid generated from conventional base fluids. This suggests that the
polymeric base fluid could replace the conventional base fluid
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