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This review explores the evolution of prestressed timber/bamboo
structures across component, connection, and structural levels, and it
examines the corresponding performance of prestressed specimens.
Firstly, the utilization of prestress in beams is achieved through either pre-
bending methods or the incorporation of additional components.
Subsequently, prestress in timber/bamboo columns often appears in the
form of lateral confinement, which improves the compressive performance
of the columns. On the structural level, prestress is applied in self-
centering structural systems and large-span string timber/bamboo
structures. Detailed schematic diagrams illustrate the application methods
and underlying principles of prestress in timber/bamboo components and
structures. Based on the current state of research, the future research
needs and development directions are outlined. The research aims to
promote the broader application of prestressed timber/bamboo structures
in practical engineering, contributing to the advancement of sustainable
building practices.
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INTRODUCTION

Timber/bamboo structures, as an ancient architectural form, have played an
essential role in construction since primitive societies and continue to exert influence to
this day. The 67-meter Yingxian Wooden Pagoda, completed in 1056, has been preserved
for thousands of years and has served as a representative example of ancient timber
construction techniques (Liu and Yang 2019). The Forbidden City in Beijing, one of the
most emblematic collections of ancient timber structures, employed exquisite mortise,
tenon joints, and bracketing systems (Paliszewska-Mojsiuk 2018). This configuration
ingeniously alleviated impacts caused by earthquakes, thereby ensuring the structure’s
stability and safety (Gustafson et al. 2008). In the 1840s, Chicago, USA, witnessed the
emergence of lightweight timber frame houses constructed using 38 mm thick timber,
assembled with long nails (De Geetere and Ingelaere 2014). This lightweight timber frame
structure has progressively become one of the most predominant architectural forms for
low-rise housing, dormitories, and hotels (Caniato et al. 2017). The Dai’s bamboo house
in China represents a typical example of traditional bamboo architecture. The connection
method involves the tying of bamboo rafters, characterized by the use of local materials,
effective ventilation and moisture prevention, and high spatial efficiency (Sattar. 1995). In
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contrast, the Naman Conference Center in Da Nang, Vietnam, integrates bamboo with
modern materials including glass and steel, offering new solutions to current environmental
challenges (Thi et al. 2017).

In the latter half of the 19" century, the demand for large-scale infrastructure
facilitated the emergence and utilization of steel and reinforced concrete (Yeoh ef al. 2011).
Due to the limited industrial technological capabilities of timber/bamboo structures at that
time, they gradually receded from the purview of construction engineering (Omenzetter et
al. 2011). Nevertheless, since 1950, timber/bamboo materials have experienced a
resurgence in construction practices (Aloisio et al. 2023b). The use of bamboo in
foundations, doors, windows, and walls has progressively increased, enabling nearly all
parts of a house, to be constructed using bamboo except fireplaces and chimneys (McClure
1956). The distribution of timber architecture in England was summarized by Smith (1965),
highlighting the distinctions and connections among different regional forms of timber
structures. Timber planks can be widely applied in farm buildings such as sheds, barns,
silos, and granaries (Banks 1972). Timber arch bridges and timber truss bridges also
became increasingly common starting from the 1980s (Duwadi and Ritter 1997; Totman
1983; Verna et al. 1984). The reasons for this revival can be attributed to the following two
aspects:

(1) The rise of the green and sustainable development concept

In recent years, the green and sustainable development concept has prompted a
reassessment of traditional materials’ environmental impact in construction engineering
(Abdulhameed et al. 2023). Studies on timber/bamboo materials have shown that they are
associated with low carbon emissions and energy consumption during growth and
processing (Lim et al. 2023). Additionally, buildings with timber/bamboo materials exhibit
excellent insulation properties, resulting in outstanding lifecycle carbon emissions and
energy utilization efficiency (Dodoo et al. 2014; Robati and Oldfield 2022). These
advantages have driven the application of timber/bamboo structures in green buildings.

(2) Development of modern bio-materials

Natural wood is susceptible to decay, with irregular shapes and varying mechanical
properties. Its mechanical performance is significantly impacted by environmental factors
such as temperature and humidity, making it unsuitable for use in some aspects of
construction (Bartlett et al. 2019; Cui et al. 2024). Against this background, engineered
timber/bamboo materials have gradually emerged, such as glulam-laminated timber (GLT),
cross-laminated timber (CLT), and laminated veneer lumber (LVL). GLT, which dates back
to 1870, involves bonding solid timber sections together in the same direction through
gluing (Kim et al. 2011). Each layer of timber in CLT is glued perpendicularly to the
adjacent layers, providing uniform strength in both directions (Huang et al. 2022; Bai et al.
2024). LVL is a single-layer board with the grain oriented in the same direction, which has
a better mechanical performance than common GLT (Zhu et al. 2007; (Ardalany et al.
2011). Given the scarcity of timber and the abundance of bamboo resources in some areas,
various engineered bamboo materials, such as glulam-laminated bamboo (GLB), cross-
laminated bamboo (CLB), and laminated veneer bamboo (LVB), have been proposed (Lee
et al. 1998; Liu et al. 2016; Chen et al. 2022). Due to the superior mechanical properties
of bamboo fibers, engineered bamboo materials manufactured from them exhibit higher
density, elasticity, and strength compared to timber (Chen ef al. 2022; Tian et al. 2023),
and the bending strength of GLB is higher than that of CLB (Sinha et al. 2014).
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Although engineered timber/bamboo materials are economical and practical,
effectively addressing the defects of natural wood, the promotion of timber/bamboo
structures still faces challenges. Firstly, the fire resistance of bamboo and timber is directly
related to the safety of occupants in buildings. Published research has employed the
charring rate to measure the fire resistance of timber/bamboo materials (Schmid et al. 2014;
Xu et al. 2015; Zhang et al. 2019). Based on the Reduced Cross Section Method (RCSM),
novel fire design models for glulam timber/bamboo have been proposed to provide
significant references for modern bamboo and timber engineering (Xu et al. 2018; Cui et
al. 2023).

Furthermore, compared with steel or concrete materials, the relatively lower
mechanical performance and brittle failure mode of timber/bamboo materials limit the
development of timber/bamboo structures towards long spans, high-rise, and large-scale
applications (Li et al. 2019; G. Wang et al. 2024). Existing research has explored additional
components, such as FRP plates (Canning and Luke 2008; Colombi and Fava 2015;
Stratford and Cadei 2006), strips (Motavalli ef al. 2010; Khedmatgozar Dolati and Mehrabi
2022), bars (Cheng et al. 2018; Hadhood et al. 2021; Wdowiak-Postulak et al. 2023), or
steel strands (Ranzi and Ostinelli 2017; Zhang et al. 2022) for reinforcing timber/bamboo
elements, but their combined efficiency still requires improvement.

Additionally, despite the high strength-to-weight ratio of timber/bamboo materials,
which offer higher utilization efficiency compared to low-carbon steel and ordinary
concrete (Crocetti 2016), many experimental investigations have shown that failures in
timber/bamboo structures are mainly concentrated in the connection areas. The connection
methods, joint stiffness, and bearing capacity directly impact the overall performance of
prefabricated timber/bamboo structures. Although many new modern connection methods
have been proposed, such as nail connections (Gattesco and Boem 2016; Ruan et al. 2022),
screw connections (Hossain ef al. 2016; Schiro et al. 2018), bolted connections (Lam ef al.
2010; Quenneville and Mohammad 2000; Song et al. 2017; Cui et al. 2024), and self-
tapping wood screws (Li e al. 2017; Petrycki et al. 2020; Cui et al. 2022), the most suitable
connection for improving the brittle characteristics of timber/bamboo structures still needs
to be studied.

To solve the issues mentioned above, prestress technology, which has served as a
main reinforcement approach for concrete structures (Akl ef al. 2017; Gao et al. 2017), is
introduced into timber/bamboo structures for the enhancement of structural components.
The introduction of prestress can significantly enhance the fire resistance of glulam timber
or bamboo, with the degree of enhancement positively correlated with the magnitude of
prestress (Quiquero et al. 2020; Zhang et al. 2024). In the research on mechanical
properties, extended research has demonstrated the effectiveness of prestress in improving
strength and stiffness, reducing deflection, and optimizing tress distribution. Additionally,
prestress technology is also utilized in the connections of timber /bamboo structures to
improve overall stress and deformation patterns, enhancing the vertical load-bearing and
seismic performance of structures. This advancement promotes the development of large-
span and high-rise buildings.

This study provides an overview of the methods for applying prestressing
technology in timber/bamboo structures at the component, connection, and structural levels
and the corresponding performance of the prestressed specimens. By summarizing the
characteristics of existing research, this paper identifies the directions to be explored,
particularly in the lack of research on efficient reinforcement for timber/bamboo materials,
unestablished prestress loss standards, and the actual seismic performance. This review
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points out future research directions, providing theoretical references for engineering
applications.

THE ORIGIN OF PRESTRESS IN TIMBER/BAMBOO STRUCTURES

A prestress condition exists early in the growth process of trees. The stress
associated with the expansion of cross-sections during germination is referred to as growth
stress. The causes and distribution characteristics of growth stress in trees were first
discussed by Miinch (1938) and Jacobs (1938). Growth stress was observed to be unevenly
distributed radially along the cross-section, with compressive prestress generated at the
center and tensile prestress at the outmost edges, as shown in Fig. 1(a). Due to the
susceptibility of buckling under compression for wood fibers (Boyd 1950), the
compressive strength along the grain is typically only about half of its tensile strength.
Commonly, wind or seismic loads result in a bending response in trees, causing tension on
one side and compression on the other side of the cross-section, as illustrated in Fig. 1(b).
After the superimposition of growth and bending stress states, compressive stress on the
compression side is mitigated while tensile stress on the tension side increases, as
illustrated in Fig. 1(c). The utilization of the mechanical properties and overall load-bearing
capacity are improved.

(a) Growth stresses (b) Bending stresses (c) Resulting stresses

Fig. 1. Longitudinal stresses in a tree trunk, redrawn from the description of Sehlstrém (2021)

In ancient times, tents constructed with tensioned bent slender branches to resist
wind loads exemplified an early application of prestress in timber/bamboo structures
(Gasparini 2006). Wedge connection was a significant traditional structure connection form
(Gustafson et al. 2008). A wedge was a small wooden peg with a thick top and sharp bottom.
Its tip was inserted into a gap in the connection, and the flat end was struck with a heavy
object driving the wedge deeper (Yang et al. 1999), as shown in Fig. 2(a). The gaps
expanded and prestressed to achieve fixing and connection. Grubenman combined wedges
with iron straps to construct the first laminated timber arch (James 2017). The Wettingen
Bridge, built in 1765, was based on this principle, as shown in Fig. 2(b) (Caldenby 2018).
The basic wedges were improved by incorporating iron straps, with additional tensile
strength and stability added to the bridge.
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In the 19 century, the rapid expansion of American railroads drove the further
development of prestressed timber bridges (Wipf et al. 2000). It began with Lon’s patent
for a timber truss bridge (Long 1830), as shown in Fig. 2(c), where counterbraces applied
prestress using wedges (Gasparini and Simmons 1997a,b; Gasparini 2006; Gasparini et al.
2006). This method incorporated engineering mathematical principles to distribute loads
and stresses within the structure better. However, it was soon superseded by Howe's new
patent (Howe 1840), which introduced pre-tensioned iron tendons into the truss, as
illustrated in Fig. 2(d) (Sutherland 2016). The introduction of iron tendons also facilitated
the construction of more standardized and reliable bridges.

Timber/bamboo structures have gradually evolved into modern large-span
structural systems represented by glued laminated timber structures (D’ Aveni and D’ Agata
2017; Li et al. 2019; Jia 2022). The development of prestress in timber/bamboo structures
is exhibited in Fig. 3. The review of timber/bamboo structures in the following sections is
divided into the following main sections in order from components to structures: (1)
Prestressed timber/bamboo beams; (2) Prestressed timber/bamboo composite columns; (3)
Timber/bamboo lateral resistance structural systems adopting prestress technology; and (4)
Prestressed technology in large-span timber structural systems. The methods of prestress
applied and the effects it contributed to in timber/bamboo components, connections, and
structures are discussed in detail.

Ancient pre-stressed

bamboo/timber components ;

. A P Reinforcement concrete  Prestress technology  Flexural capacity Seismic performance

/ | The First Industrial |World War Il [
8000BC 6000BC 2500BC 1CE 1800CE |Revolution 1900CE ‘ 2000CE 2010CE

1 | 1 ! ! 1 | 1 1 || 1

| I T T | [ | .
Tents Bows Barges Wedges Truss timber bridges Prestressed bamboo/ Lateral resisting
) timber beams structural system

Prestressed large-span
timber structure systems

Reduced utilization of
bamboo/timber materials

Fig. 3. Development of prestress in timber/bamboo structures
PRESTRESSED TIMBER/BAMBOO BEAMS

Applying Prestress through Pre-arching

The elastic modulus and strength of timber/bamboo materials are relatively lower
compared with steel and concrete, making timber/bamboo beams prone to deformation and
brittle bending failure (Zheng et al. 2021; Arafat and Imam 2022). Therefore, various
prestressing techniques have been introduced to enhance the mechanical performance of
timber/bamboo beams or other bending components. One common method is applying
external loads to achieve pre-arching, as shown in Fig. 4(a). After flipping, the pre-arched
timber beam experiences tension in the upper flange and compression in the lower flange,
resulting in improved flexural load capacity (De Luca and Marano 2012).

In 2005, Borri et al. (2005) attained prestress in beams through the three-point
bending test, with the stress intensity corresponding to about 25 to 35% of the ultimate
timber flexure strength. The Preflex process was first implemented in prestressed concrete
beams, applying symmetric four-point bending loads to achieve a more uniform stress
distribution in flexural members. The Preflex cambering method for timber flexure
members was proposed by Morano and Mannini (2006). In this method, the bottom of the
beam was turned upwards before a two-point load was applied. The end anchors were
tightened when the deformation of the GLT beam reached the predicted value and a pre-
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arched beam was achieved after rotating. Moreover, Lehmann (2015) and Negrao (2016)
achieved beam cambering using an adjustable support that can move up and down, creating
a triangular moment distribution in the beam, as shown in Fig. 4(b). However, due to the
excessive support force and bearing displacement required, it was not suitable for large-
size beams.

! _!___!___j___i___‘___y___!_ Y — Triangular bendiqg moment distribution
elied riie ——l \ ‘7;‘1;‘_47““—» ‘ :\ [ _,‘L—"”Jx
Sl i - Uniform/two-point/ =7
‘ multi-point loading
e e “# ~—bearings
(a) Applying external load (b) Applying adjustable bearings

Lo

laminated <
bamboo i
-~ compressed wood (CW) blocks layers \ — glulam beam

f L2 2 7]

W (d) Utilizing interactions between different
(c) Utilizing moisture-dependent curvatures layers
swelling nature

Fig. 4. Main forms of pre-arched timber/bamboo beams

Anshari and associates (Anshari et al. 2012; Anshari and Guan 2014; Anshari 2015)
conducted a series of research on inducing camber in timber beams using the moisture-
dependent swelling nature of compressed wooden (CW) blocks since 2012. The researchers
cut rectangular holes at the top of GLT beams and inserted CW blocks with low moisture
content to induce camber through hygroscopic swelling, as shown in Fig. 4(c). Significant
initial tensile stress at the top and compressive stress at the bottom of the beam was
generated. Compared with non-prestressed beams, beams with three 45mm CW blocks had
flexural stiffness increased by 19% and the load-bearing capacity increased by 14%. In
2017, Anshari and Guan (2017) further validated the effects of the thickness and depth of
CW blocks on initial flexural stiffness and the ultimate load-bearing capacity of beams
through finite element analysis. The results illustrated that increasing the thickness and
insertion depth of CW blocks could enhance the initial flexural stiffness of the beam by an
average of 20%, but the improvement in ultimate flexural load capacity was relatively
limited. Miiller and associates (Miiller 2020; Miiller et al. 2021) applied Anshari’s method
to timber-concrete composite components to reduce the buckling of timber elements caused
by cast-in-place concrete.

In 2023, Zhang et al. (2023) presented a pioneering concept that utilized the
laminated interaction between layered timber/bamboo components with different
curvatures to generate prestress, as shown in Fig. 4(d). A single layer of bamboo was glued
and bent in a curved arc-shaped mold and then bonded with a straight glulam beam to form
a composite component. In this process, the pre-bent laminated bamboo layer was
straightened, and prestress was stored within it. The study found that compared with non-
prestressed beams, the bending performance of sandwich beams with top and bottom
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laminated bamboo layers was obviously improved, showing a shift in failure mode from
brittle tensile to ductile failure.

Applying Prestress through Additional Components

In addition to the aforementioned cambering methods, using additional prestressed
components to reinforce timber/bamboo beams is also a widely cited effective method
(Garas and Chalmers 1980; Gessner et al. 2019). The forms of additional prestressed
components include prestressed steel bars (Chen et al. 1998; De Luca and Marano 2012),
steel strands (Guo ef al. 2021; Zhang et al. 2022), FRP materials (Achintha and Balan 2019;
Breveglieri and Czaderski 2021; Custodio and Cabral-Fonseca 2023), efc. The methods of
combining prestressed components with main load-bearing beams include internal
unbonded or bonded methods (Al-Emrani and Kliger 2006; Capozucca 1998; Yi et al.
2015), and the Near Surface Mounted (NSM) method (Al-Saadi et al. 2017; Rocha et al.
2023), etc.

Post-tensioned steel bars or wires
2 nut 2/_ nut

AL /

.

steel bars
(a) Applying prestress by tightening nuts downwards

Anchor Anchor
tensioning tensioning
(b) Applying prestress by anchor tensioning
A
e ™

Whether adhesive is used or not Types of reinforcement

MR NNN RNy TRNTRRNER

", . ; Straight tendons Parabolic tendons

o
No adhesive  Utilizing adhesive
(near surface mounted, NSM)

Ll 4

—

steering gear 11
=y } steel strands

(c) Prestressed steel strands reinforce timber beams

Fig. 5. Post-tensioned steel bars or wires strengthen bamboo/timber beams

In 1962, Bohannan first proposed the idea of using prestressed high-strength steel
bars or strands in timber/bamboo structures to improve mechanical performance. Peterson
(1965) used epoxy resin to bond prestressed steel bars on the tension side of timber beams
in 1965. Song et al. (2002) drilled holes at the end of timber beams and placed 4 mm
diameter round steel bars at the bottom edge, then applied prestress by tightening nuts, as
shown in Fig. 5(a). De Luca and Marano (2012) used mechanical tensioning devices to
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apply a pre-tension force of 18 kN to steel bars, then bonded the bars with adhesive into
the bottom grooves of beams as external prestress reinforcement, as shown in Fig. 5(b).
The stiffness and ultimate load capacity of the beams increased by 37.9% and 40.2%
respectively, and the ductility increased by 79.1% compared to unreinforced components.

Negrao et al. (2016) discussed the effects of pre-tensioning and post-tensioning
methods on beams reinforced with prestressed bars. The adhesive was required in the pre-
tensioning method, while the steel bars were anchored at the beam ends using mechanical
devices before applying prestress in the post-tensioning method. The long-term fatigue risk
of the adhesive interface in the pre-tensioning method made post-tensioned bars more
suitable for practical engineering applications. Liu ef al. (2008) discovered that setting
post-tensioned bars in the tension section improved the ultimate load capacity significantly,
whereas the improvement in stiffness was imitated. Wei et al. (2020) and Tian et al. (2021,
2023) found that embedding post-tensioned steel bars in bamboo beams enhanced stiftness,
load-bearing capacity, and material efficiency. However, the influence of prestress level on
ultimate load capacity was limited under the same reinforcement ratio.

The selection of bonded and unbonded prestressed tendons directly affects the
overall performance of flexural members. Bonded prestressed tendons form an integral
whole with beams by using adhesive (Al-Emrani and Kliger 2006; Hahn ef al. 2019), while
unbonded prestressed tendons transmit prestress directly through end anchorage, avoiding
potential negative impacts from the adhesive (Bedrifiana ef al. 2021; Bu and Wu 2018).
McConnel et al. (2014) studied the flexural performance of bonded and unbonded linear
prestressed glulam beams, finding that unbonded prestressed timber beams contributed to
a 17.6% and 8.1% rise in load-bearing capacity and stiffness respectively. Meanwhile,
bonded prestressed increased about 40.1% in load-bearing capacity and 30.0% in stiffness,
showing a more significant improvement in beam performance. Christoforo et al. (2022)
conducted similar experiments, finding that failure mode changed from tension fiber
rupture to compression fiber buckling and wrinkling.

Steel strands possess higher tensile strength compared to steel bars, and they are
also widely used in the external prestress reinforcement of bending components, as shown
in Fig. 5(c). Yang et al. (2016) applied prestress to steel strands using a jack. The GLT
beams reinforced with externally prestressed steel strands showed significant
improvements in ultimate load-bearing capacity and flexural stiffness. Prestressed steel
strands also changed the brittle tensile failure mode into ductile compressive yielding
failure mode. Guo et al. (2018) studied the short-term and long-term bending deflections
of bamboo-timber composite beams reinforced with prestressed steel strands. Under the
same external load level, prestress could reduce costs effectively by saving 13.3% to 52.0%
on bamboo-timber composite materials. Additionally, the application of prestress
effectively reduced the long-term deflection of composite beams. Zhang et al. (2022)
proposed a new steel-bamboo composite beam strengthened with externally prestressed
steel strands tensioned by cross-core jacks. Test results indicated that two-point prestressed
specimens exhibited better deformation performance and higher loading-bearing capacity
than the one-point prestressed specimens.

FRP materials

Fiber Reinforced Polymer (FRP) materials, characterized by high strength, good
ductility, lightweight, and corrosion resistance, have been widely used in the reinforcement
of building structures. With successful applications of prestressed FRP materials in
concrete, attempts have been made to reinforce timber/bamboo structures with FRP
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materials. The common reinforcement practice was achieved by gluing (usually epoxy
resin) sheets, plates, bars, etc., to timber beams.

According to the bonding position, FRP reinforcement of bamboo-timber beams
can be categorized into five forms, as shown in Fig. 6. The method (a) in Fig. 6 directly
performs in-situ flexural reinforcement (Johnsson et al. 2007), which is relatively
convenient for construction. Based on method (a), FRP can also be fixed inside the beam,
and this modified method (b) in Fig. 6 can be directly incorporated into the production
process of glued-laminated timber. Method (c) utilizes thin FRP sheets to wrap the entire
timber beam, allowing reinforcement in cases of partial timber degradation and cracking.
In methods (d) and (e), the bottom of the timber beam is slotted and FRP bars are inserted.

(a) (b) () (d) (e)
Fig. 6. Types of strengthening beams with FRP

Numerous studies have employed pre-tensioned FRP bars to reinforce
timber/bamboo components. Johnsson et al. (2007) adhered carbon fiber reinforced
polymer (CFRP) bars to the bottom grooves of beams with epoxy adhesive, validating the
Near Surface Mounted (NSM) method for timber components. Ahmad (2010) applied
prestress to GFRP bars by mechanical tensioning. The bending performance of timber
beams reinforced with bonded glass fiber (GFRP) bars was studied, showing enhancements
in both load-bearing capacity and stiffness after reinforcement. Lv et al. (2019) proposed
a one-step forming method suitable for large-scale factory production to produce
prestressed bamboo beam specimens. The one-step forming method combined pre-
tensioned basalt fiber-reinforced polymer (BFRP) bars with bamboo through compression
molding. The BFRP-bamboo composite beams exhibited better flexural performance.
Wdowiak-Postulak and associates (Wdowiak-Postulak 2023; Wdowiak-Postulak et al.
2023, 2024) conducted four-point bending tests on timber beams enhanced by different
post-tensioned bars, including steel, glass, and basalt bars. The results indicated that
prestressed steel bars provided the most significant improvements in ultimate strength and
stiffness.

In terms of FRP sheets or plates, researchers mainly have adopted three methods to
apply prestress in timber/bamboo structures (Halicka and Slosarz 2021, 2022). The first
method involved adhering FRP sheets to the bottom surface after cambering the beam.
Triantafillou and Deskovic (1992) first established the method of FRP-sheet reinforcement
for timber/bamboo structures. CFRP sheets were adhered to the tension surface of the
timber beam. Wang et al. (2016) also conducted similar experiments, proposing that this
method was suitable for reinforcing traditional timber structure beams. Borri ef al. (2005)
adhered CFRP sheets to the bottom surface of timber beams after the pre-bending process
with three-point loading. It was observed that three layers of CFRP sheets could enhance
the flexural capacity by 60.3% compared with unreinforced beams.
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In the second method, the strips were pre-tensioned and then adhered to the bottom
surface of the beam with adhesive. Dolan et al. (2001, 2016) used hydraulic jacks to
introduce kevlar fiber-reinforced polymer (KFRP) fabric and GFRP rods to reinforce GLT
beams. It was observed that the stiffness increased by 25% and 70%, and the ultimate
flexural strength increased by 25% and 110%, respectively. Isleyen et al. (2021, 2023)
conducted analyses of pre-tensioned CFRP-reinforced timber beams, finding that the
flexural performance of damaged timber beams could be restored to an undamaged state
after reinforcement. Halicka and Slosarz (2021, 2022) used hydraulic actuators to tension
FRP sheets, which were then adhered to the surface of timber beams. The advantages of
pre-tensioned CFRP strips lie in reducing beam deflection and shifting the failure mode
from flexural failure to delamination failure.

Step-wise pre-stressing was the third method. This method was first proposed by
Stocklin and Meier (2003) and was initially applied to prestressing concrete structures at
EMPA (Swiss Federal Laboratories for Material Testing and Research). In this method, a
pre-tensioned section was bonded in the middle of the FRP strip at mid-span first. An
electric heating system was used to accelerate the curing of the adhesive. After the middle
part of the FRP strips was firmly bonded to the mid-span of the beam, the prestress value
was reduced and the FRP was adhered to both sides of the beam gradually. These steps
were repeated multiple times until the entire strip was bonded. Brunner and Schniiriger
(2005) used the step-wise pre-stressing method to introduce prestress to FRP plates
reinforcing timber beams. Epoxy adhesive is applied to one side of the FRP plate, and
heating activates the adhesive in that area, attaching the FRP to the bottom mid-span of the
beam. Starting from the mid-span, the process gradually moves towards the supports while
reducing the prestress. Dagher and Altimore (2005) suggested that the load-bearing
capacity of prestressed GFRP reinforced timber beams using the EPMA method increased
by about 95% compared with non-reinforced beams.

Prestress Loss

Prestress loss is inevitable in prestressed flexural members. The loss can be
classified into immediate losses and long-term losses based on the time the losses occurred.
Immediate loss includes friction loss, anchorage loss, and sequential tensioning loss in
post-tensioning (He et al. 2022). Long-term losses include creep, prestress relaxation,
temperature differential loss, and loss due to elastic deformation, all of which develop over
time (Davies and Fragiacomo 2011; Riccadonna et al. 2020).

Scholars have described the changes in prestress over time in timber/bamboo beams.
Quenneville and Vandalen (1994a,b) proposed rheological models and equations for
prestress relaxation in timber beams under different environmental humidity conditions.
Fragiacomo and associates (Fragiacomo and Davies 2011; Fragiacomo et al. 2011; Davies
and Fragiacomo 2011) derived the prestress loss of LVL timber beams under long-term
loading. Palermo et al. (2011) extended this model to other cable profiles such as catenary
or parabolic and multi-span beams, providing a unified design procedure. Chen and Feng
(2013) derived and validated the initial prestress formula for pre-tensioned FRP-
strengthened timber beams with 3 CFRP-reinforced timber beams. Lv ef al. (2019a,b)
studied a novel BFRP-reinforced bamboo beam, categorizing prestress loss into 4 parts and
proposing a method for effective prestress calculation. Based on experimental results,
Fojtik et al. (2023) established an effective prestress expression for prestressed glued
laminated timber beams. The prestress loss calculation methods summarized in each study
are depicted in Table 1.
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Table 1. Prestress Loss Calculation Model

Author Formula
w P, —wu
P=(P,—wu,)e | 1-— |+wu, +w| -2 '
Quenneville and NC, NC,
Vandalen 1994a,
1994b c =W, Kk
N N(k,+k,)
Davies and
Fragiacomo, ¢
2011; o, 0) =0, [1-1, () |+ [ E [L-1,(t=7)]d(,(5)=¢,,(7))
Fragiacomo and
Davies 2011

P, (t) = P, (1-0.0036t"")

Granello et al.

2020 R, (t) = P, (1-0.00076t"°%)
f(l-1
o, =E.d,»,f |:C0th%+¥:|
Chen and Feng
2013
d
f = % i+i o :4_f
dt\ E, E, h
Fojtik et al. 2023) P =8.538-0.014day

Note: The meaning of the letters is given in the appendix.

Zheng et al. (2019) systematically proposed the calculation method for the prestress
loss in prestressed CFRP plate-strengthened GLT beams. The prestress loss was divided
into two parts. The first batch of prestress loss included cushion deformation and timber
elastic deformation loss, while the second batch of losses included CFRP prestress
relaxation, seasonal temperature difference, and timber creep loss. Based on the assumption
of plane cross-section and the relationship between force balance and deformation
coordination, the formula for prestress loss in FRP-reinforced glued laminated beams was
established, as exhibited in Table. 2.

Researchers have also conducted controlled evaluation of prestress loss. Brunner
and Schniiriger (2005) employed gradient anchorage technology, using an electronic
control device to bond the prestressed laminate to the timber beam, addressing the issue of
delamination. Dagher and Altimore (2005) developed a novel device for applying prestress
in GFRP plates, with measured prestress loss in GFRP after 12 days being less than 2% of
the original initial stress. Giongo et al. (2013) utilized self-tapping screws and found that
prestress loss was reduced probably because the screws transmitted the load deeper into
beams, reducing compressive stress at the end of beams. Guo et al. (2018, 2021, 2022)
increased the number of prestressed steel strands used for external prestressing from 2 to 4
and found a significant reduction in prestress loss. However, when the number increased
to 6, there was no change observed in prestress loss. Zuo et al. (2016) conducted a 45-day
long-term loading test on 10 prestressed GLT beams. The study revealed that as the quantity
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of steel reinforcement increased, there was a corresponding increase in total prestress value
and total stress loss, while mid-span long-term deflection declined.

Table 2. Zheng’s (Zheng et al. 2019) Prestress Loss Calculation Model

Types of Prestress Loss Formula
Loss in cushion .= O
deformation Y 14+ A xE /(A x E )
Ab f f g
The first batch of P 1
prestress loss % = A__Ull 8 1_1+ +12u8.2 1 h?
Loss of elastic f H HO;
deformation of timber E, b, d,
e
EW bW hW
= X —
Loss of CFRP prestress O3 =@ A
The second relaxation - —
batch of @ =a-+blog(t), a,b are linear coefficients
prestress loss Loss of seasonal _ _
temperature difference oy = AT X|af aW|X Ey
Timber creep 0,5 =(0.3+0.9) x (012 l E; )x E,
Note: The meaning of the letters is given in the appendix.

In summary, pre-arching, as an early commonly used prestressing method, is
characterized by its simple principle. Early pre-arching timber/bamboo beams relied on
external loads and movable supports. Recently, researchers are continuing to explore pre-
arching methods through moisture-dependent swelling nature or bending curvature
characteristics of the timber without external equipment. Compared to the pre-arching
timber/bamboo beams, additional prestressed components can significantly enhance the
ultimate load-bearing capacity and crack resistance, with more precise control of prestress
accuracy and less prestress loss under long-term loads, meeting the requirements of
industrial producing requirements. Additional prestressed components include bars, sheets,
and plates, primarily made of steel and FRP. Prestressed steel bars can significantly
enhance the flexural capacity of timber /bamboo beams, while steel plates exhibit superior
performance in reducing crack propagation. In addition to steel prestressed components,
FRP sheets and bars are also widely used in the reinforcement of bending-resistant
timber/bamboo structures due to their excellent strength-to-weight ratio and corrosion
resistance. Additionally, the performance of adhesives significantly affects the
timber/bamboo beams with prestressed sheets. The properties of the binder, bonding
methods, and the contact mechanism between FRP bars and timber beams need further
investigation. Furthermore, prestress loss is an unavoidable issue in prestressed structures.
The components of prestress loss and the methods for calculating prestress in
timber/bamboo beams have no unified standards yet, and measures to reduce prestress loss
require further innovation and exploration.
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PRESTRESSED TIMBER/BAMBOO COMPOSITE COLUMNS

Unlike bending members, prestress in compressed components such as columns
often appears in the form of lateral constraints, where the prestress can restrict lateral
expansion, reduce column buckling, and enhance the column’s compressive load-bearing
capacity.

Traditional timber columns have defects of relatively low load-bearing capacity,
large cross-sectional area, susceptibility to erosion, and vulnerability to insect damage.
Peripheral constraint materials including steel and FRP, etc. are commonly adopted for the
reinforcement of timber columns (Krishnan 2020; Xu et al. 2023). The reinforcement
measurement could delay the local buckling of steel tubes and reduce the outward
expansion of the timber (Wang et al. 2024). However, simple wrapping reinforcement
offers limited mechanical performance enhancements for timber columns, with
disadvantages such as low combination efficiency. Therefore, prestress is introduced into
composite columns, applying initial lateral stress to the core timber through external
wrapping materials. The reinforcement method using prestress places the core timber in a
triaxial compression state upon encountering external loads, effectively limiting lateral
deformation of the timber and avoiding stress hysteresis in steel (Krishnan 2020).

=)o
(b) £

(c)
- (d)

|

|
(a) core timber column
(b) thin-walled steel
(c) steel bar
(d) bolt

Fig. 7. Prestressed timber composite columns

Yang et al. (2018) utilized prestressed steel strips with different layers and spacing
to reinforce cracked timber columns. The results demonstrated that the ductility and energy
dissipation performance capacity of the cracked timber columns were enhanced, but steel
strips had no significant impact on the stiffness. Li et al. (2019) and Wang et al. (2022)
proposed a novel prestressed thin-walled steel tube confined timber column, where
constraints were applied by a thin-walled steel tube. Bolt holes were punched into the steel
strip, and the tightening force of bolts was the main measure to apply circumferential
prestress, as shown in Fig. 7. Additionally, Li ef al. (2019) also proposed a calculation
model for the ultimate strength of the new prestressed steel-timber composite column, as
indicated in Eq. 1,

F F F 0.8236
—we —1+4.1 il + el (1)
F F

wo wo0

where Fue represents the ultimate strength of composite columns confined by prestressed
steel tube, Fwo represents the ultimate strength of unconfined timber columns; Fi; represents
the initial lateral confining stress induced in the core timber column by the initial steel
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strain, and Fe represents the effective lateral confining stress induced in the core timber
column by steel tube.

Qiu et al. (2021) developed a numerical model for prestressed thin-walled steel
confined square timber columns. The numerical analysis results indicated that excessive
prestress in composite columns could lead to yielding in parts of the steel, thus weakening
the effect of active confinement and resulting in a lower ultimate load capacity. Wang ef al.
2022) wrapped a CFRP sheet around the exterior of prestressed steel-timber columns. It
was discovered that the addition of CFRP sheets significantly improved the ductility and
axial load-bearing capacity of columns.

LATERAL RESISTING STRUCTURAL SYSTEMS

In terms of lateral resistance structures, prestress is also applied to the seismic
performance enhancement of timber/bamboo structures (Nguyen ef al. 2018; Smith et al.
2016). American and Japanese scholars have proposed resilient cities as the main direction
for future research. Self-centering earthquake-resistant structures, as a type of resilient
structures, have become one of the research hotspots in recent years (Froozanfar et al.
2024). The self-centering seismic system is a novel structural system that combines
prestress and energy-dissipating technologies to realize seismic resilience (Amer 2023).
Moreover, the self-centering design concept is also extended to the timber/bamboo
structural systems, including self-centering timber/bamboo frame structures (Di Cesare et
al. 2018; Igbal and Popovski 2017; Shu et al. 2019) and self-centering timber/bamboo
shear walls, etc. (Chen et al. 2024; Fitzgerald et al. 2020; Sun, et al. 2020). The specific
implementation methods are described as follows.

Self-centering Frame Structures

The ductile design of traditional frame structures with strong columns and weak
beams utilizes the plastic deformation of structural components to dissipate seismic energy
(Nie et al. 2020; Park 1986). This kind of design results in a severe post-earthquake loss
(Paulay 1986; Wongpakdee and Leelataviwat 2017). Consequently, prestress has been
employed to connect beam-column joints in frame structures, effectively addressing this
issue. Palermo et al. (2005), based on Priestley’s theory (Priestley and Calvi 1991), which
pioneered the low-damage design of reinforced concrete structures, proposed a multi-LVL
seismic-resistant frame system using post-tensioned tendons connections called
Prestressed-Laminated (Pres-lam) systems. This method adopted unbonded prestressed
tendons to connect the structural components. Internal energy steel bars were adopted to
dissipate energy, thus resulting in a special ‘flag-shaped’ self-centering dissipative
hysteresis loop as shown in Fig. 8.

Newcombe et al. (2008) proposed a novel seismic resisting system for multi-story
timber buildings, integrating improved ductile steel connections based on the post-
tensioning method and rocking timber frames. The connections between beams and
columns involved LVL, unbonded post-tensioned tendons, and energy dissipaters. Igbal et
al. (2016) conducted full-scale tests on Newcombe’s system, using both steel dissipaters
and unbonded post-tensioning mild steel reinforcement. This hybrid system offered
significantly higher energy dissipation compared with schemes relying solely on steel bars.
Igbal ef al. (2018) also studied the mechanical behavior of post-tensioning connections
with specific energy dampers, achieving near-zero residual deformation. Sarti ez al. (2016)
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proposed a CWC (column-wall-column) rocking column-shear wall hybrid system, where
vertical prestressed steel bars were tensioned within the timber walls, and U-shaped steel
plates served as additional overturning moment resistance and energy dissipaters. Wei and
associates (Wei et al. 2024; Wu et al. 2014) conducted experiments on rigid timber wall
panels equipped with slip-friction connectors, which imparted ductility and elastoplastic
characteristics to brittle structures.

Internal energy dissipation Rocking motion [ | i"'
ererrraassersdl (AT HINER Gavar
B
gt "‘.,,:, } Ly e
|\ Unbonded post-tensioned tendon
g 7
4 Force 4 Force 4 Force
> | SALERI > / >
Displacement Displacement >/ Displacement
/v /
Unbonded post-tensioned tendon Energy dissipation Hybrid system

Fig. 8. Palermo’s model (Palermo et al. 2005; CCO 1.0 Universal)

Di Cersare et al. (2017, 2018, 2020) conducted dynamic tests on a three-story post-
tensioned timber frame structure equipped with an energy-dissipating brace system. The
elastic seismic performance was enhanced by coupling the post-tensioned frame with the
energy-dissipating braces. Smith et al. (2014, 2016) conducted experimental research on
inclined steel plate post-tensioned GLT connections and observed strong self-centering and
energy dissipation capability. Wanninger and Frangi (2014), Wanninger ef al. (2015) and
Granello et al. (2018, 2019) conducted a series of pushover tests on post-tensioned timber
structural frames. The results showed that these connections presented low damage levels
in tests. Li et al. (2020) compared the performance of hybrid post-tensioned GLT
connections with tenon connections and concluded that post-tensioned timber connections
exhibited smaller residual deformations.

Self-centering Shear Walls

Although traditional shear walls using nailed or bolted connections have been
shown to have high strength and stiffness, their deformation capacity is limited in
earthquakes (Aloisio et al. 2023a; Brown et al. 2022). The shear walls exhibited brittle
characteristics in an earthquake, leading to stiffness degradation, substantial base shearing,
severe connection damage, etc. (Li et al. 2018; Hasani and Ryan 2022). Consequently,
scholars have investigated self-centering rocking or shear wall systems using post-
tensioned prestressed connections (Miliziano et al. 2020; Piri and Massumi 2022; Brown
et al. 2023). This structure employed vertical prestressing tendons to pre-compress the
walls to the foundation, supplemented with small energy-dissipating components such as
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U-shaped flexural plates (UFP) or post-tensioned (PT) tendons (Sun et al. 2020; Wilson et
al. 2020), as shown in Fig. 9. Under seismic actions, gap openings were present at the
bottom of the walls, thus effectively controlling structural damage and reducing residual
displacements (Aloisio et al. 2023c; Brown et al. 2023). In addition, the energy-dissipating
components enhanced the energy dissipation capacity of the structure, further mitigating
the seismic response (Cui et al. 2020; Piri and Massumi 2022).

Timber wall
"""" [T | Anchorage | - Floor diaphragm
_________ | T T T O
UFP
Steel plate
PP iaa ’Intem‘al PT Bars
e o 0 ® o 0
e e e Bolts e e e
Rivets

Fig. 9. UFP and PT

Igbal et al. (2015) proposed a new form of self-centering rocking wall coupled with
PT tendons and UFPs as energy dissipation devices. UFP dissipaters exhibited stable
energy dissipation characteristics and an ideal flag-shaped hysteresis behavior was
achieved by combining UFPs with PT tendons. Ganey ef al. (2017) described experiments
conducted to develop a resilient wall system that combined cross-laminated timber (CLT)
panels with vertical PT tendons to provide post-earthquake recovery.

He and associates (Chen et al. 2021; He et al. 2022; Li et al. 2023) introduced a
new type of self-centering steel-timber hybrid shear wall system (SC-STHSW), which
employed post-tensioned tendons for the connection of frame beam-column joints, with
slip friction dampers serving as connectors between the frame and the wall. Low-cycle
quasi-static tests on this system revealed that the SC-STHSW system exhibited unique flag-
shaped hysteresis characteristics. The prestressed connection method effectively controlled
residual deformations of the structure, and the additional friction dampers enhanced the
energy dissipation capacity. Lu et al. (2022, 2024) proposed a self-centering CLB (cross-
laminated bamboo) rocking wall structural system using two kinds of friction dampers:
traditional friction dampers and novel bending-friction coupled dampers (BFCD). The
results obtained from quasi-static tests and finite element analyses indicated that the BFCD
provided higher stiffness and energy dissipation capacity under a high drift ratio.

Traditional frame structures and shear wall structures are two different structural
forms. A lateral force-resisting system composed of beams and columns is used in frame
structures to withstand seismic actions, while shear wall structures resist seismic actions
through their own bending and shear stiffness. Compared to frame structures, shear wall
systems are more suitable for high-rise buildings, with a maximum applicable height of up
to 140 meters in seismic design.

Based on traditional frame systems, self-centering timber frame structures
originated from Palermo’s (2005) research on the low-damage prestressed laminated (Pres-
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Lam) system. Unbonded post-tensioned tendons connect the timber structural members,
forming connections that resist seismic forces and dissipate energy, thereby overcoming
the stiffness degradation and connection damage issues faced by traditional frames during
earthquakes. Unlike the self-centering timber frame mechanism that uses press at beam-
column joints, the self-centering timber shear wall system uses vertical prestressing
tendons to press the wall to the foundation, supplemented by small energy-dissipating
components such as UFPs. This approach reduces residual displacement and enhances
energy dissipation capacity.

PRESTRESSED LARGE-SPAN TIMBER STRUCTURAL SYSTEMS

In large-span structures, buckling is a crucial factor affecting the strength and
stability of the structure as spacing increases (Fraternali and Motta 2023). Consequently,
components of large-span structures should be designed to be axially loaded to ensure
performance stability (Crocetti 2016; Dietsch and Winter 2018). Moreover, due to the large
number of components in large-span structures, there are high demands on connection
performance. Therefore, existing studies have applied prestress to large-span structures
through the string approach. This structural system originated from the concept of
tensioning the beam via chords through rods (Saitoh 1998; Saitoh and Okada 1999). The
short rods were placed under the beam, applying prestress to the beam via cables, as shown
in Fig. 10. The compressive force on the rods created a counter moment and reverse
deflection in the upper chord structure, thus reducing the maximum moment and final
deflection under external loads, and improving the structural stress distribution (Nie and Li
2012). The string method was also applied in the timber/bamboo large-span structures.

(a) Beam string structure Beam

| | |

£ a4

Vertical rodfs_f.i«; < Cables

(b) Arch string structure Arch

o

fl
= R
= N > ‘ =" B

Vertical [st,;’ T+ —TCables

(c) Cable-arch structure Arch

—= Y r——

| Verticalrods~ . _Cables

77

Fig. 10. Types of string structures
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Plane String Structures

The concept of plane string structure was first used in the 138.7-meter-long Royal
Albert Double-Span Railway Bridge in 1859 (Norrie 1956), as shown in Fig. 11. Masao
Saito defined the beam chord structure at the IASS Symposium as a self-balancing system
composed of compressive and tensile components connected by vertical rods. Plane string
timber/bamboo structures have also been investigated (Zhao et al. 2024). Current research
has employed analytical methods, finite element analysis, and model testing to study the
performance of plane timber/bamboo string structures, including the number of vertical
rods, initial geometric defects, and material elastoplastic (Lee et al. 2023).
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Fig. 11. Royal Albert Double-span Railway Bridge
(https://en.wikipedia.org/wiki/Royal_Albert_Bridge#cite note-3)

Zhang et al. (2014) conducted compressive tests on the glued string beams and
concluded that increasing the arch-span ratio or sag-span ratio could enhance the load-
bearing capacity. Guo et al. (2019) employed experimental and numerical research to
explore factors affecting the performance of string truss GLT beams, finding that the
stronger the compressive performance increased with the number of prestressing steel
wires and the magnitude of the prestress. String truss GLT beams exhibited a ductile failure
mode. Bending tests were conducted by Sun et al. (2016) on plane string beams with
additional prestressed steel strands on the lower chord. The results showed that the brittle
failure mode in ordinary beams was transformed into a plastic failure mode, with their
ultimate load-bearing capacity and stiffness inversely proportional to the span ratio. Zhao
et al. (2023) conducted five-point bending tests on large-span glulam string beams. The
results indicated that as the diameter increased, the failure region shifted from the lower
steel cable to the upper composite beam.

Fig. 12. Horinouchi Town Gymnasium in Japan
(https://data.shinkenchiku.online/en/projects/articles/SK_1996 _12_240-0)
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Plane string structures are suitable for complex architectural forms, with broad
application prospects. The Horiuchi Town Gymnasium in Japan (Saitoh 1998), with a 38
m span, exemplified a timber plane string structure using composite truss beams, as
exhibited in Fig. 12. Situated in a snowy region of Japan, the design considered a snow
depth of up to 3.5 m. Ingeniously, diagonal rods and columns were added to the string
beams; thus, the rigidity of the string components was increased during heavy snow-
loading conditions.

Spatial String Structures

Spatial string structures are formed from plane string configurations arranged in
specific spatial layouts. Common types include bidirectional, multidirectional, and radial
spatial string structures (Yifeng and Jian 2011). Due to the complex forces involved,
modeling experiments on spatial string structures are challenging. Consequently, scholars
often utilize numerical analysis methods for research (Cantcheff 2011).

Rumlova and Fojtik (2015) used finite element analysis to study the strain changes
at critical joints in spatial timber roof supports. Sejkot ef al. (2020) examined the lateral
stability of single and bidirectional timber string roof structures through numerical
simulation and geometric nonlinear analysis. The results revealed that lateral torsional
buckling of the top chords adversely affected the load-bearing capacity against out-of-plane
buckling. Ching and Carstensen (2022) developed a topology optimization algorithm for
steel-timber hybrid spatial string structures, aimed at reducing carbon emissions.

The [zumo Dome in Japan, completed in 1992, was a typical application of timber
spatial string structures, featuring a spatial arch string structure with a diameter of 140 m
and height of 49 m (Tsubota et al. 1993). Composed of radial wooden arches and a lower
cable system, the structure was covered with an external membrane, as illustrated in Fig.
13. The dome was entirely assembled on the ground, elevated and heightened through a
central temporary support structure, lifting the dome into place.

Plane string structures primarily extend within a two-dimensional plane and are
commonly found in roofs and bridges, including forms such as beam string structures, arch
string structures, and cable-arch string structures. Spatial string structures are composed of
plane string structures arranged in specific spatial configurations, including bidirectional
string structures, multidirectional string structures, and radial string structures, which are
more suitable for large-span structural roofs. Research on modern timber/bamboo string
structures is still relatively limited, requiring further study on their load-bearing
mechanisms and seismic performance to promote their engineering applications.
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BIBLIOMETRIC ANALYSIS ON PRESTRESSED TIMBER/BAMBOO
STRUCTURES

Recent research hotspots were identified in this work through statistical analysis.
Knowledge maps depicted innovative developments and forecasted future directions
(Borner ef al. 2003). The primary research corpus was sourced from the Web of Science
database, with data mining facilitated by CiteSpace. Keyword trend analysis, as shown in
Fig. 15, elucidated development hotspots, revealing a shift in research focus towards
structural seismic resilience over the past two decades. Efforts have concentrated on
understanding the mechanical behavior and performance characteristics of individual
components, laying theoretical foundations for practical engineering applications.
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However, translating research findings into practical engineering applications
remains limited with unresolved issues:

(1) Efficient timber/bamboo component reinforcement schemes

Currently, combining steel and FRP can mitigate the shortcomings of
timber/bamboo materials. Steel is prone to corrosion and is heavy, while timber/bamboo
materials are hygroscopic. Timber/bamboo beams reinforced by FRP may face problems
including reduced bonding or delamination, aging, humidity, temperature fluctuations, efc.
Consequently, the development and research in novel strong, lightweight, durable, and
economical materials for reinforcing timber/bamboo components and structures are needed.

(2) Evaluation and control of prestress loss

Timber/bamboo structures are sensitive to environmental humidity and temperature
changes. Creep can easily cause prestress loss, affecting long-term performance and
threatening durability. Research on prestress loss could help predict and control the
effectiveness of prestress more accurately in practical design. Currently, there is no unified
standard for calculating prestress loss in prestressed timber/bamboo components and
connections. Therefore, further research is needed on the long-term performance
considering prestress loss.

(3) Novel prestressed timber/bamboo structural systems

Currently, there is no widely applied form of prestressed timber/bamboo structures.
Prefabrication of timber/bamboo structures is a key focus of future research in structural
engineering. By reasonably combining prestressed components or additional parts,
modular units can be achieved, promoting prefabricated design and production. There is an
urgent need for novel structures that can be rapidly assembled and possess stable seismic
performance. This will effectively ensure construction safety in earthquake areas and
reduce the damage caused by seismic disasters.

CONCLUDING REMARKS

Since the 1950s, extensive research has been conducted by scholars on prestressed
timber/bamboo structures, initially focusing on the mechanical performance of individual
components post-tensioning, gradually shifting to the overall structural performance. This
paper has provided an overview of the historical development and latest advancements in
prestressed timber/bamboo structures from the component, connection, and structural
levels, as shown in Fig. 15. This study utilized bibliometric analysis to summarize existing
research, identifying the issues remaining to be addressed and future development
directions in the field of prestressed timber/bamboo structures. The main research
conclusions are as follows:

(1) To address the shortcomings of low stiffness and susceptibility to deformation
in timber/bamboo flexure components, external load pre-cambering and additional
prestressed components are used to reinforce timber/bamboo flexural components. The
results indicate that when retrofitted with prestress, timber/bamboo flexural components
present improved ultimate bearing capacity, ductility, and stiffness. Meanwhile, prestress
loss in prestressed reinforced bending components is inevitable. Further research on the
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long-term performance of prestressed timber/bamboo structures considering prestress loss
1S necessary.

(2) Prestress in timber/bamboo columns often appears in the form of lateral
confinement. Thin-walled steel tubes are commonly used to constrain the timber columns.
Circumferential prestress is applied to the thin-walled steel through bolt-tightening force,
placing the core timber column in a triaxial compression state when subjected to external
loads. Prestressed steel-timber composite columns can enhance the ultimate compressive
bearing capacity of the columns, improving ductility and energy dissipation characteristics.

(3) Self-centering lateral resistance timber/bamboo structures can enhance seismic
performance through prestress technology. Self-centering timber/bamboo frames and shear
wall systems have continuously developed over the past two decades. The combination of
prestressed connections and additional energy-dissipating components can effectively
control seismic damage, achieving excellent flag-shaped hysteretic performance. However,
such structures have not yet been widely applied. The actual seismic response and anti-
collapse performance need further investigation.

(4) Existing research applies prestress to timber/bamboo large-span structural
systems through the string method, changing their failure mode to ductile failure.
Timber/bamboo string structures are favored for their elegant and smooth configuration
and spatial sense, with practical applications such as the Izumo Dome in Japan. To promote
the development of such structures, further research is needed from the perspectives of
numerical simulation, theoretical study, and model testing, especially considering the long-
term performance of structures with varying prestress.
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Fig. 15. Overview of the history and recent advances in timber/bamboo structures

Despite significant progress in various prestressed timber/bamboo structures,
practical engineering applications remain limited. In addition to technical considerations,
the economic implementation of prestressing technology requires comprehensive life-cycle
cost assessments. Additionally, it is necessary to translate research achievements and
existing engineering experience into design codes and standards. Advances in materials
science, structural testing, and computational technology will further promote the
development of prestressed timber/bamboo systems, contributing to greener and more
sustainable urban construction.
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LIST OF SYMBOLS
Symbols

P prestressing force

w weight constant
u fluid displacement

LT time from prestressing

N amping constant
k spring stiffness
o stress
r relaxation coefficient

E young’s modulus
e total strain

Ein environmental (thermal and moisture) strain
d thickness
y shear strain
/ length

G shear modulus
h height

day number of the day from the beginning of prestress
A section area
0 initial eccentricity

AT temperature range between environment and anchored rebars
a coefficient of temperature expansion

F ultimate strength
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Subscripts

refers to initial value at t=0

refers to reservoir in dashpot reservoir element of relaxation model
refers to stressing system in relaxation model
refers to wood element in relaxation model
refers to prestressing steel

refers to loaded beam

refers to unloaded beam

refers to FRP

refers to the adhesive layer

refers to wood

refers to elastic area

refers to cushion blocks under beams
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