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INTRODUCTION 

 

Timber/bamboo structures, as an ancient architectural form, have played an 

essential role in construction since primitive societies and continue to exert influence to 

this day. The 67-meter Yingxian Wooden Pagoda, completed in 1056, has been preserved 

for thousands of years and has served as a representative example of ancient timber 

construction techniques (Liu and Yang 2019). The Forbidden City in Beijing, one of the 

most emblematic collections of ancient timber structures, employed exquisite mortise, 

tenon joints, and bracketing systems (Paliszewska-Mojsiuk 2018). This configuration 

ingeniously alleviated impacts caused by earthquakes, thereby ensuring the structure’s 

stability and safety (Gustafson et al. 2008). In the 1840s, Chicago, USA, witnessed the 

emergence of lightweight timber frame houses constructed using 38 mm thick timber, 

assembled with long nails (De Geetere and Ingelaere 2014). This lightweight timber frame 

structure has progressively become one of the most predominant architectural forms for 

low-rise housing, dormitories, and hotels (Caniato et al. 2017). The Dai’s bamboo house 

in China represents a typical example of traditional bamboo architecture. The connection 

method involves the tying of bamboo rafters, characterized by the use of local materials, 

effective ventilation and moisture prevention, and high spatial efficiency (Sattar. 1995). In 
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contrast, the Naman Conference Center in Da Nang, Vietnam, integrates bamboo with 

modern materials including glass and steel, offering new solutions to current environmental 

challenges (Thi et al. 2017). 

In the latter half of the 19th century, the demand for large-scale infrastructure 

facilitated the emergence and utilization of steel and reinforced concrete (Yeoh et al. 2011). 

Due to the limited industrial technological capabilities of timber/bamboo structures at that 

time, they gradually receded from the purview of construction engineering (Omenzetter et 

al. 2011). Nevertheless, since 1950, timber/bamboo materials have experienced a 

resurgence in construction practices (Aloisio et al. 2023b). The use of bamboo in 

foundations, doors, windows, and walls has progressively increased, enabling nearly all 

parts of a house, to be constructed using bamboo except fireplaces and chimneys (McClure 

1956). The distribution of timber architecture in England was summarized by Smith (1965), 

highlighting the distinctions and connections among different regional forms of timber 

structures. Timber planks can be widely applied in farm buildings such as sheds, barns, 

silos, and granaries (Banks 1972). Timber arch bridges and timber truss bridges also 

became increasingly common starting from the 1980s (Duwadi and Ritter 1997; Totman 

1983; Verna et al. 1984). The reasons for this revival can be attributed to the following two 

aspects: 

 

(1) The rise of the green and sustainable development concept 

In recent years, the green and sustainable development concept has prompted a 

reassessment of traditional materials’ environmental impact in construction engineering 

(Abdulhameed et al. 2023). Studies on timber/bamboo materials have shown that they are 

associated with low carbon emissions and energy consumption during growth and 

processing (Lim et al. 2023). Additionally, buildings with timber/bamboo materials exhibit 

excellent insulation properties, resulting in outstanding lifecycle carbon emissions and 

energy utilization efficiency (Dodoo et al. 2014; Robati and Oldfield 2022). These 

advantages have driven the application of timber/bamboo structures in green buildings. 

 

(2) Development of modern bio-materials 

Natural wood is susceptible to decay, with irregular shapes and varying mechanical 

properties. Its mechanical performance is significantly impacted by environmental factors 

such as temperature and humidity, making it unsuitable for use in some aspects of 

construction (Bartlett et al. 2019; Cui et al. 2024). Against this background, engineered 

timber/bamboo materials have gradually emerged, such as glulam-laminated timber (GLT), 

cross-laminated timber (CLT), and laminated veneer lumber (LVL). GLT, which dates back 

to 1870, involves bonding solid timber sections together in the same direction through 

gluing (Kim et al. 2011). Each layer of timber in CLT is glued perpendicularly to the 

adjacent layers, providing uniform strength in both directions (Huang et al. 2022; Bai et al. 

2024). LVL is a single-layer board with the grain oriented in the same direction, which has 

a better mechanical performance than common GLT  (Zhu et al. 2007; (Ardalany et al. 

2011). Given the scarcity of timber and the abundance of bamboo resources in some areas, 

various engineered bamboo materials, such as glulam-laminated bamboo (GLB), cross-

laminated bamboo (CLB), and laminated veneer bamboo (LVB), have been proposed (Lee 

et al. 1998; Liu et al. 2016; Chen et al. 2022). Due to the superior mechanical properties 

of bamboo fibers, engineered bamboo materials manufactured from them exhibit higher 

density, elasticity, and strength compared to timber (Chen et al. 2022; Tian et al. 2023), 

and the bending strength of GLB is higher than that of CLB (Sinha et al. 2014). 
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Although engineered timber/bamboo materials are economical and practical, 

effectively addressing the defects of natural wood, the promotion of timber/bamboo 

structures still faces challenges. Firstly, the fire resistance of bamboo and timber is directly 

related to the safety of occupants in buildings. Published research has employed the 

charring rate to measure the fire resistance of timber/bamboo materials (Schmid et al. 2014; 

Xu et al. 2015; Zhang et al. 2019). Based on the Reduced Cross Section Method (RCSM), 

novel fire design models for glulam timber/bamboo have been proposed to provide 

significant references for modern bamboo and timber engineering (Xu et al. 2018; Cui et 

al. 2023). 

Furthermore, compared with steel or concrete materials, the relatively lower 

mechanical performance and brittle failure mode of timber/bamboo materials limit the 

development of timber/bamboo structures towards long spans, high-rise, and large-scale 

applications (Li et al. 2019; G. Wang et al. 2024). Existing research has explored additional 

components, such as FRP plates (Canning and Luke 2008; Colombi and Fava 2015; 

Stratford and Cadei 2006), strips  (Motavalli et al. 2010; Khedmatgozar Dolati and Mehrabi 

2022), bars (Cheng et al. 2018; Hadhood et al. 2021; Wdowiak-Postulak et al. 2023), or 

steel strands (Ranzi and Ostinelli 2017; Zhang et al. 2022) for reinforcing timber/bamboo 

elements, but their combined efficiency still requires improvement. 

Additionally, despite the high strength-to-weight ratio of timber/bamboo materials, 

which offer higher utilization efficiency compared to low-carbon steel and ordinary 

concrete (Crocetti 2016), many experimental investigations have shown that failures in 

timber/bamboo structures are mainly concentrated in the connection areas. The connection 

methods, joint stiffness, and bearing capacity directly impact the overall performance of 

prefabricated timber/bamboo structures. Although many new modern connection methods 

have been proposed, such as nail connections (Gattesco and Boem 2016; Ruan et al. 2022), 

screw connections (Hossain et al. 2016; Schiro et al. 2018), bolted connections (Lam et al. 

2010; Quenneville and Mohammad 2000; Song et al. 2017; Cui et al. 2024), and self-

tapping wood screws (Li et al. 2017; Petrycki et al. 2020; Cui et al. 2022), the most suitable 

connection for improving the brittle characteristics of timber/bamboo structures still needs 

to be studied. 

To solve the issues mentioned above, prestress technology, which has served as a 

main reinforcement approach for concrete structures (Akl et al. 2017; Gao et al. 2017), is 

introduced into timber/bamboo structures for the enhancement of structural components. 

The introduction of prestress can significantly enhance the fire resistance of glulam timber 

or bamboo, with the degree of enhancement positively correlated with the magnitude of 

prestress (Quiquero et al. 2020; Zhang et al. 2024). In the research on mechanical 

properties, extended research has demonstrated the effectiveness of prestress in improving 

strength and stiffness, reducing deflection, and optimizing tress distribution. Additionally, 

prestress technology is also utilized in the connections of timber /bamboo structures to 

improve overall stress and deformation patterns, enhancing the vertical load-bearing and 

seismic performance of structures. This advancement promotes the development of large-

span and high-rise buildings. 

This study provides an overview of the methods for applying prestressing 

technology in timber/bamboo structures at the component, connection, and structural levels 

and the corresponding performance of the prestressed specimens. By summarizing the 

characteristics of existing research, this paper identifies the directions to be explored, 

particularly in the lack of research on efficient reinforcement for timber/bamboo materials, 

unestablished prestress loss standards, and the actual seismic performance. This review 
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points out future research directions, providing theoretical references for engineering 

applications. 

 

 

THE ORIGIN OF PRESTRESS IN TIMBER/BAMBOO STRUCTURES 
 

A prestress condition exists early in the growth process of trees. The stress 

associated with the expansion of cross-sections during germination is referred to as growth 

stress. The causes and distribution characteristics of growth stress in trees were first 

discussed by Münch (1938) and Jacobs (1938). Growth stress was observed to be unevenly 

distributed radially along the cross-section, with compressive prestress generated at the 

center and tensile prestress at the outmost edges, as shown in Fig. 1(a). Due to the 

susceptibility of buckling under compression for wood fibers (Boyd 1950), the 

compressive strength along the grain is typically only about half of its tensile strength. 

Commonly, wind or seismic loads result in a bending response in trees, causing tension on 

one side and compression on the other side of the cross-section, as illustrated in Fig. 1(b). 

After the superimposition of growth and bending stress states, compressive stress on the 

compression side is mitigated while tensile stress on the tension side increases, as 

illustrated in Fig. 1(c). The utilization of the mechanical properties and overall load-bearing 

capacity are improved. 

   
(a) Growth stresses (b) Bending stresses (c) Resulting stresses 

 
 

Fig. 1. Longitudinal stresses in a tree trunk, redrawn from the description of Sehlström (2021) 

 

In ancient times, tents constructed with tensioned bent slender branches to resist 

wind loads exemplified an early application of prestress in timber/bamboo structures 

(Gasparini 2006). Wedge connection was a significant traditional structure connection form 

(Gustafson et al. 2008). A wedge was a small wooden peg with a thick top and sharp bottom. 

Its tip was inserted into a gap in the connection, and the flat end was struck with a heavy 

object driving the wedge deeper (Yang et al. 1999), as shown in Fig. 2(a). The gaps 

expanded and prestressed to achieve fixing and connection. Grubenman combined wedges 

with iron straps to construct the first laminated timber arch (James 2017). The Wettingen 

Bridge, built in 1765, was based on this principle, as shown in Fig. 2(b) (Caldenby 2018). 

The basic wedges were improved by incorporating iron straps, with additional tensile 

strength and stability added to the bridge.  
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(a) Wedges principle, redrawn from the description of Yang et al. (1999)  

 
(b) Wettingen bridge, redrawn from the description of Caldenby (2018) 

 
(c) Lon’s patent, redrawn from the patent of Long (1830)  

 
(d) Howe’s patent, redrawn (Howe 1840) 

 
Fig. 2. Evolution of prestressed timber bridges 
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In the 19th century, the rapid expansion of American railroads drove the further 

development of prestressed timber bridges (Wipf et al. 2000). It began with Lon’s patent 

for a timber truss bridge (Long 1830), as shown in Fig. 2(c), where counterbraces applied 

prestress using wedges (Gasparini and Simmons 1997a,b; Gasparini 2006; Gasparini et al. 

2006). This method incorporated engineering mathematical principles to distribute loads 

and stresses within the structure better. However, it was soon superseded by Howe's new 

patent (Howe 1840), which introduced pre-tensioned iron tendons into the truss, as 

illustrated in Fig. 2(d) (Sutherland 2016). The introduction of iron tendons also facilitated 

the construction of more standardized and reliable bridges. 

Timber/bamboo structures have gradually evolved into modern large-span 

structural systems represented by glued laminated timber structures (D’Aveni and D’Agata 

2017; Li et al. 2019; Jia 2022). The development of prestress in timber/bamboo structures 

is exhibited in Fig. 3. The review of timber/bamboo structures in the following sections is 

divided into the following main sections in order from components to structures: (1) 

Prestressed timber/bamboo beams; (2) Prestressed timber/bamboo composite columns; (3) 

Timber/bamboo lateral resistance structural systems adopting prestress technology; and (4) 

Prestressed technology in large-span timber structural systems. The methods of prestress 

applied and the effects it contributed to in timber/bamboo components, connections, and 

structures are discussed in detail. 

Fig. 3. Development of prestress in timber/bamboo structures 
 

PRESTRESSED TIMBER/BAMBOO BEAMS 
 

Applying Prestress through Pre-arching 
The elastic modulus and strength of timber/bamboo materials are relatively lower 

compared with steel and concrete, making timber/bamboo beams prone to deformation and 

brittle bending failure (Zheng et al. 2021; Arafat and Imam 2022). Therefore, various 

prestressing techniques have been introduced to enhance the mechanical performance of 

timber/bamboo beams or other bending components. One common method is applying 

external loads to achieve pre-arching, as shown in Fig. 4(a). After flipping, the pre-arched 

timber beam experiences tension in the upper flange and compression in the lower flange, 

resulting in improved flexural load capacity (De Luca and Marano 2012). 

In 2005, Borri et al. (2005) attained prestress in beams through the three-point 

bending test, with the stress intensity corresponding to about 25 to 35% of the ultimate 

timber flexure strength. The Preflex process was first implemented in prestressed concrete 

beams, applying symmetric four-point bending loads to achieve a more uniform stress 

distribution in flexural members. The Preflex cambering method for timber flexure 

members was proposed by Morano and Mannini (2006). In this method, the bottom of the 

beam was turned upwards before a two-point load was applied. The end anchors were 

tightened when the deformation of the GLT beam reached the predicted value and a pre-
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arched beam was achieved after rotating. Moreover, Lehmann (2015) and Negrão (2016) 

achieved beam cambering using an adjustable support that can move up and down, creating 

a triangular moment distribution in the beam, as shown in Fig. 4(b). However, due to the 

excessive support force and bearing displacement required, it was not suitable for large-

size beams. 

 
 
Fig. 4. Main forms of pre-arched timber/bamboo beams 

 

Anshari and associates (Anshari et al. 2012; Anshari and Guan 2014; Anshari 2015) 

conducted a series of research on inducing camber in timber beams using the moisture-

dependent swelling nature of compressed wooden (CW) blocks since 2012. The researchers 

cut rectangular holes at the top of GLT beams and inserted CW blocks with low moisture 

content to induce camber through hygroscopic swelling, as shown in Fig. 4(c). Significant 

initial tensile stress at the top and compressive stress at the bottom of the beam was 

generated. Compared with non-prestressed beams, beams with three 45mm CW blocks had 

flexural stiffness increased by 19% and the load-bearing capacity increased by 14%. In 

2017, Anshari and Guan (2017) further validated the effects of the thickness and depth of 

CW blocks on initial flexural stiffness and the ultimate load-bearing capacity of beams 

through finite element analysis. The results illustrated that increasing the thickness and 

insertion depth of CW blocks could enhance the initial flexural stiffness of the beam by an 

average of 20%, but the improvement in ultimate flexural load capacity was relatively 

limited. Müller and associates (Müller 2020; Müller et al. 2021) applied Anshari’s method 

to timber-concrete composite components to reduce the buckling of timber elements caused 

by cast-in-place concrete. 

In 2023, Zhang et al. (2023) presented a pioneering concept that utilized the 

laminated interaction between layered timber/bamboo components with different 

curvatures to generate prestress, as shown in Fig. 4(d). A single layer of bamboo was glued 

and bent in a curved arc-shaped mold and then bonded with a straight glulam beam to form 

a composite component. In this process, the pre-bent laminated bamboo layer was 

straightened, and prestress was stored within it. The study found that compared with non-

prestressed beams, the bending performance of sandwich beams with top and bottom 
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laminated bamboo layers was obviously improved, showing a shift in failure mode from 

brittle tensile to ductile failure. 

 

Applying Prestress through Additional Components 
In addition to the aforementioned cambering methods, using additional prestressed 

components to reinforce timber/bamboo beams is also a widely cited effective method 

(Garas and Chalmers 1980; Gessner et al. 2019). The forms of additional prestressed 

components include prestressed steel bars (Chen et al. 1998; De Luca and Marano 2012), 

steel strands (Guo et al. 2021; Zhang et al. 2022), FRP materials (Achintha and Balan 2019; 

Breveglieri and Czaderski 2021; Custódio and Cabral-Fonseca 2023), etc. The methods of 

combining prestressed components with main load-bearing beams include internal 

unbonded or bonded methods (Al-Emrani and Kliger 2006; Capozucca 1998; Yi et al. 

2015), and the Near Surface Mounted (NSM) method (Al-Saadi et al. 2017; Rocha et al. 

2023), etc. 

 

Post-tensioned steel bars or wires  

 
Fig. 5. Post-tensioned steel bars or wires strengthen bamboo/timber beams 

 

In 1962, Bohannan first proposed the idea of using prestressed high-strength steel 

bars or strands in timber/bamboo structures to improve mechanical performance. Peterson 

(1965) used epoxy resin to bond prestressed steel bars on the tension side of timber beams 

in 1965. Song et al. (2002) drilled holes at the end of timber beams and placed 4 mm 

diameter round steel bars at the bottom edge, then applied prestress by tightening nuts, as 

shown in Fig. 5(a). De Luca and Marano (2012) used mechanical tensioning devices to 
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apply a pre-tension force of 18 kN to steel bars, then bonded the bars with adhesive into 

the bottom grooves of beams as external prestress reinforcement, as shown in Fig. 5(b). 

The stiffness and ultimate load capacity of the beams increased by 37.9% and 40.2% 

respectively, and the ductility increased by 79.1% compared to unreinforced components.  

Negrão et al. (2016) discussed the effects of pre-tensioning and post-tensioning 

methods on beams reinforced with prestressed bars. The adhesive was required in the pre-

tensioning method, while the steel bars were anchored at the beam ends using mechanical 

devices before applying prestress in the post-tensioning method. The long-term fatigue risk 

of the adhesive interface in the pre-tensioning method made post-tensioned bars more 

suitable for practical engineering applications. Liu et al. (2008) discovered that setting 

post-tensioned bars in the tension section improved the ultimate load capacity significantly, 

whereas the improvement in stiffness was imitated. Wei et al. (2020) and Tian et al. (2021,  

2023) found that embedding post-tensioned steel bars in bamboo beams enhanced stiffness, 

load-bearing capacity, and material efficiency. However, the influence of prestress level on 

ultimate load capacity was limited under the same reinforcement ratio. 

The selection of bonded and unbonded prestressed tendons directly affects the 

overall performance of flexural members. Bonded prestressed tendons form an integral 

whole with beams by using adhesive (Al-Emrani and Kliger 2006; Hahn et al. 2019), while 

unbonded prestressed tendons transmit prestress directly through end anchorage, avoiding 

potential negative impacts from the adhesive (Bedriñana et al. 2021; Bu and Wu 2018). 

McConnel et al. (2014) studied the flexural performance of bonded and unbonded linear 

prestressed glulam beams, finding that unbonded prestressed timber beams contributed to 

a 17.6% and 8.1% rise in load-bearing capacity and stiffness respectively. Meanwhile, 

bonded prestressed increased about 40.1% in load-bearing capacity and 30.0% in stiffness, 

showing a more significant improvement in beam performance. Christoforo et al. (2022) 

conducted similar experiments, finding that failure mode changed from tension fiber 

rupture to compression fiber buckling and wrinkling. 

Steel strands possess higher tensile strength compared to steel bars, and they are 

also widely used in the external prestress reinforcement of bending components, as shown 

in Fig. 5(c). Yang et al. (2016) applied prestress to steel strands using a jack. The GLT 

beams reinforced with externally prestressed steel strands showed significant 

improvements in ultimate load-bearing capacity and flexural stiffness. Prestressed steel 

strands also changed the brittle tensile failure mode into ductile compressive yielding 

failure mode. Guo et al. (2018) studied the short-term and long-term bending deflections 

of bamboo-timber composite beams reinforced with prestressed steel strands. Under the 

same external load level, prestress could reduce costs effectively by saving 13.3% to 52.0% 

on bamboo-timber composite materials. Additionally, the application of prestress 

effectively reduced the long-term deflection of composite beams. Zhang et al. (2022) 

proposed a new steel-bamboo composite beam strengthened with externally prestressed 

steel strands tensioned by cross-core jacks. Test results indicated that two-point prestressed 

specimens exhibited better deformation performance and higher loading-bearing capacity 

than the one-point prestressed specimens. 

 

FRP materials 

Fiber Reinforced Polymer (FRP) materials, characterized by high strength, good 

ductility, lightweight, and corrosion resistance, have been widely used in the reinforcement 

of building structures. With successful applications of prestressed FRP materials in 

concrete, attempts have been made to reinforce timber/bamboo structures with FRP 
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materials. The common reinforcement practice was achieved by gluing (usually epoxy 

resin) sheets, plates, bars, etc., to timber beams. 

According to the bonding position, FRP reinforcement of bamboo-timber beams 

can be categorized into five forms, as shown in Fig. 6. The method (a) in Fig. 6 directly 

performs in-situ flexural reinforcement (Johnsson et al. 2007), which is relatively 

convenient for construction. Based on method (a), FRP can also be fixed inside the beam, 

and this modified method (b) in Fig. 6 can be directly incorporated into the production 

process of glued-laminated timber. Method (c) utilizes thin FRP sheets to wrap the entire 

timber beam, allowing reinforcement in cases of partial timber degradation and cracking. 

In methods (d) and (e), the bottom of the timber beam is slotted and FRP bars are inserted.  

 

 

 

 

Fig. 6. Types of strengthening beams with FRP 
 

 

Numerous studies have employed pre-tensioned FRP bars to reinforce 

timber/bamboo components. Johnsson et al. (2007) adhered carbon fiber reinforced 

polymer (CFRP) bars to the bottom grooves of beams with epoxy adhesive, validating the 

Near Surface Mounted (NSM) method for timber components. Ahmad (2010) applied 

prestress to GFRP bars by mechanical tensioning. The bending performance of timber 

beams reinforced with bonded glass fiber (GFRP) bars was studied, showing enhancements 

in both load-bearing capacity and stiffness after reinforcement. Lv et al. (2019) proposed 

a one-step forming method suitable for large-scale factory production to produce 

prestressed bamboo beam specimens. The one-step forming method combined pre-

tensioned basalt fiber-reinforced polymer (BFRP) bars with bamboo through compression 

molding. The BFRP-bamboo composite beams exhibited better flexural performance. 

Wdowiak-Postulak and associates (Wdowiak-Postulak 2023; Wdowiak-Postulak et al. 

2023, 2024) conducted four-point bending tests on timber beams enhanced by different 

post-tensioned bars, including steel, glass, and basalt bars. The results indicated that 

prestressed steel bars provided the most significant improvements in ultimate strength and 

stiffness. 

In terms of FRP sheets or plates, researchers mainly have adopted three methods to 

apply prestress in timber/bamboo structures (Halicka and Slosarz 2021, 2022). The first 

method involved adhering FRP sheets to the bottom surface after cambering the beam. 

Triantafillou and Deskovic (1992) first established the method of FRP-sheet reinforcement 

for timber/bamboo structures. CFRP sheets were adhered to the tension surface of the 

timber beam. Wang et al. (2016) also conducted similar experiments, proposing that this 

method was suitable for reinforcing traditional timber structure beams. Borri et al. (2005) 

adhered CFRP sheets to the bottom surface of timber beams after the pre-bending process 

with three-point loading. It was observed that three layers of CFRP sheets could enhance 

the flexural capacity by 60.3% compared with unreinforced beams. 



 

PEER-REVIEWED REVIEW ARTICLE                   bioresources.cnr.ncsu.edu 
 

 

Lv et al. (2024). “Prestressed bamboo-timber,” BioResources 19(4), 9964-10004.  9974 

In the second method, the strips were pre-tensioned and then adhered to the bottom 

surface of the beam with adhesive. Dolan et al. (2001, 2016) used hydraulic jacks to 

introduce kevlar fiber-reinforced polymer (KFRP) fabric and GFRP rods to reinforce GLT 

beams. It was observed that the stiffness increased by 25% and 70%, and the ultimate 

flexural strength increased by 25% and 110%, respectively. İşleyen et al. (2021, 2023) 

conducted analyses of pre-tensioned CFRP-reinforced timber beams, finding that the 

flexural performance of damaged timber beams could be restored to an undamaged state 

after reinforcement. Halicka and Slosarz (2021, 2022) used hydraulic actuators to tension 

FRP sheets, which were then adhered to the surface of timber beams. The advantages of 

pre-tensioned CFRP strips lie in reducing beam deflection and shifting the failure mode 

from flexural failure to delamination failure. 

Step-wise pre-stressing was the third method. This method was first proposed by 

Stöcklin and Meier (2003) and was initially applied to prestressing concrete structures at 

EMPA (Swiss Federal Laboratories for Material Testing and Research). In this method, a 

pre-tensioned section was bonded in the middle of the FRP strip at mid-span first. An 

electric heating system was used to accelerate the curing of the adhesive. After the middle 

part of the FRP strips was firmly bonded to the mid-span of the beam, the prestress value 

was reduced and the FRP was adhered to both sides of the beam gradually. These steps 

were repeated multiple times until the entire strip was bonded. Brunner and Schnüriger 

(2005) used the step-wise pre-stressing method to introduce prestress to FRP plates 

reinforcing timber beams. Epoxy adhesive is applied to one side of the FRP plate, and 

heating activates the adhesive in that area, attaching the FRP to the bottom mid-span of the 

beam. Starting from the mid-span, the process gradually moves towards the supports while 

reducing the prestress. Dagher and Altimore (2005) suggested that the load-bearing 

capacity of prestressed GFRP reinforced timber beams using the EPMA method increased 

by about 95% compared with non-reinforced beams. 

 

Prestress Loss  
Prestress loss is inevitable in prestressed flexural members. The loss can be 

classified into immediate losses and long-term losses based on the time the losses occurred. 

Immediate loss includes friction loss, anchorage loss, and sequential tensioning loss in 

post-tensioning (He et al. 2022). Long-term losses include creep, prestress relaxation, 

temperature differential loss, and loss due to elastic deformation, all of which develop over 

time (Davies and Fragiacomo 2011; Riccadonna et al. 2020). 

Scholars have described the changes in prestress over time in timber/bamboo beams. 

Quenneville and Vandalen (1994a,b) proposed rheological models and equations for 

prestress relaxation in timber beams under different environmental humidity conditions. 

Fragiacomo and associates (Fragiacomo and Davies 2011; Fragiacomo et al. 2011; Davies 

and Fragiacomo 2011) derived the prestress loss of LVL timber beams under long-term 

loading. Palermo et al. (2011) extended this model to other cable profiles such as catenary 

or parabolic and multi-span beams, providing a unified design procedure. Chen and Feng 

(2013) derived and validated the initial prestress formula for pre-tensioned FRP-

strengthened timber beams with 3 CFRP-reinforced timber beams. Lv et al. (2019a,b) 

studied a novel BFRP-reinforced bamboo beam, categorizing prestress loss into 4 parts and 

proposing a method for effective prestress calculation. Based on experimental results, 

Fojtík et al. (2023) established an effective prestress expression for prestressed glued 

laminated timber beams. The prestress loss calculation methods summarized in each study 

are depicted in Table 1. 
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Table 1. Prestress Loss Calculation Model 
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Fojtik et al. 2023)  8.538 0.014P day= −  

Note: The meaning of the letters is given in the appendix. 

 

Zheng et al. (2019) systematically proposed the calculation method for the prestress 

loss in prestressed CFRP plate-strengthened GLT beams. The prestress loss was divided 

into two parts. The first batch of prestress loss included cushion deformation and timber 

elastic deformation loss, while the second batch of losses included CFRP prestress 

relaxation, seasonal temperature difference, and timber creep loss. Based on the assumption 

of plane cross-section and the relationship between force balance and deformation 

coordination, the formula for prestress loss in FRP-reinforced glued laminated beams was 

established, as exhibited in Table. 2. 

Researchers have also conducted controlled evaluation of prestress loss. Brunner 

and Schnüriger (2005) employed gradient anchorage technology, using an electronic 

control device to bond the prestressed laminate to the timber beam, addressing the issue of 

delamination. Dagher and Altimore (2005) developed a novel device for applying prestress 

in GFRP plates, with measured prestress loss in GFRP after 12 days being less than 2% of 

the original initial stress. Giongo et al. (2013) utilized self-tapping screws and found that 

prestress loss was reduced probably because the screws transmitted the load deeper into 

beams, reducing compressive stress at the end of beams. Guo et al. (2018, 2021, 2022) 

increased the number of prestressed steel strands used for external prestressing from 2 to 4 

and found a significant reduction in prestress loss. However, when the number increased 

to 6, there was no change observed in prestress loss. Zuo et al. (2016) conducted a 45-day 

long-term loading test on 10 prestressed GLT beams. The study revealed that as the quantity 
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of steel reinforcement increased, there was a corresponding increase in total prestress value 

and total stress loss, while mid-span long-term deflection declined. 

 

Table 2. Zheng’s (Zheng et al. 2019) Prestress Loss Calculation Model 
Types of Prestress Loss Formula 

The first batch of 
prestress loss 

Loss in cushion 
deformation ( )11

g1 /

f

f f gA E A E


 =

+  
 

Loss of elastic 
deformation of timber 

12 11 2 2

1
1

1 12 /f f

P

A h
 

 

   
= −  −      + +   

 

f f f

w w w

E b d

E b h
 =    

The second 
batch of 

prestress loss 

Loss of CFRP prestress 
relaxation  

13

f

P

A
 =   

  are linear coefficientslog( ), ,a b t a b = +  

Loss of seasonal 
temperature difference 14 f w fT E  =   −   

Timber creep ( )15 12(0.3 0.9) / f fE E = +    

Note: The meaning of the letters is given in the appendix. 

 

In summary, pre-arching, as an early commonly used prestressing method, is 

characterized by its simple principle. Early pre-arching timber/bamboo beams relied on 

external loads and movable supports. Recently, researchers are continuing to explore pre-

arching methods through moisture-dependent swelling nature or bending curvature 

characteristics of the timber without external equipment. Compared to the pre-arching 

timber/bamboo beams, additional prestressed components can significantly enhance the 

ultimate load-bearing capacity and crack resistance, with more precise control of prestress 

accuracy and less prestress loss under long-term loads, meeting the requirements of 

industrial producing requirements. Additional prestressed components include bars, sheets, 

and plates, primarily made of steel and FRP. Prestressed steel bars can significantly 

enhance the flexural capacity of timber /bamboo beams, while steel plates exhibit superior 

performance in reducing crack propagation. In addition to steel prestressed components, 

FRP sheets and bars are also widely used in the reinforcement of bending-resistant 

timber/bamboo structures due to their excellent strength-to-weight ratio and corrosion 

resistance. Additionally, the performance of adhesives significantly affects the 

timber/bamboo beams with prestressed sheets. The properties of the binder, bonding 

methods, and the contact mechanism between FRP bars and timber beams need further 

investigation. Furthermore, prestress loss is an unavoidable issue in prestressed structures. 

The components of prestress loss and the methods for calculating prestress in 

timber/bamboo beams have no unified standards yet, and measures to reduce prestress loss 

require further innovation and exploration. 
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PRESTRESSED TIMBER/BAMBOO COMPOSITE COLUMNS 
 

Unlike bending members, prestress in compressed components such as columns 

often appears in the form of lateral constraints, where the prestress can restrict lateral 

expansion, reduce column buckling, and enhance the column’s compressive load-bearing 

capacity. 

Traditional timber columns have defects of relatively low load-bearing capacity, 

large cross-sectional area, susceptibility to erosion, and vulnerability to insect damage. 

Peripheral constraint materials including steel and FRP, etc. are commonly adopted for the 

reinforcement of timber columns (Krishnan 2020; Xu et al. 2023). The reinforcement 

measurement could delay the local buckling of steel tubes and reduce the outward 

expansion of the timber (Wang et al. 2024). However, simple wrapping reinforcement 

offers limited mechanical performance enhancements for timber columns, with 

disadvantages such as low combination efficiency. Therefore, prestress is introduced into 

composite columns, applying initial lateral stress to the core timber through external 

wrapping materials. The reinforcement method using prestress places the core timber in a 

triaxial compression state upon encountering external loads, effectively limiting lateral 

deformation of the timber and avoiding stress hysteresis in steel (Krishnan 2020). 

 

 
Fig. 7. Prestressed timber composite columns 

 

Yang et al. (2018) utilized prestressed steel strips with different layers and spacing 

to reinforce cracked timber columns. The results demonstrated that the ductility and energy 

dissipation performance capacity of the cracked timber columns were enhanced, but steel 

strips had no significant impact on the stiffness. Li et al. (2019) and Wang et al. (2022) 

proposed a novel prestressed thin-walled steel tube confined timber column, where 

constraints were applied by a thin-walled steel tube. Bolt holes were punched into the steel 

strip, and the tightening force of bolts was the main measure to apply circumferential 

prestress, as shown in Fig. 7. Additionally, Li et al. (2019) also proposed a calculation 

model for the ultimate strength of the new prestressed steel-timber composite column, as 

indicated in Eq. 1, 

0.8236

0 0

1 4.1wc il el

w w

F F F

F F

 +
= +  

 
  (1) 

where Fwc represents the ultimate strength of composite columns confined by prestressed 

steel tube, Fw0 represents the ultimate strength of unconfined timber columns; Fil represents 

the initial lateral confining stress induced in the core timber column by the initial steel 
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strain, and Fel represents the effective lateral confining stress induced in the core timber 

column by steel tube. 

Qiu et al. (2021) developed a numerical model for prestressed thin-walled steel 

confined square timber columns. The numerical analysis results indicated that excessive 

prestress in composite columns could lead to yielding in parts of the steel, thus weakening 

the effect of active confinement and resulting in a lower ultimate load capacity. Wang et al. 

2022) wrapped a CFRP sheet around the exterior of prestressed steel-timber columns. It 

was discovered that the addition of CFRP sheets significantly improved the ductility and 

axial load-bearing capacity of columns.  

 

 

LATERAL RESISTING STRUCTURAL SYSTEMS 
 

In terms of lateral resistance structures, prestress is also applied to the seismic 

performance enhancement of timber/bamboo structures (Nguyen et al. 2018; Smith et al. 

2016). American and Japanese scholars have proposed resilient cities as the main direction 

for future research. Self-centering earthquake-resistant structures, as a type of resilient 

structures, have become one of the research hotspots in recent years (Froozanfar et al. 

2024). The self-centering seismic system is a novel structural system that combines 

prestress and energy-dissipating technologies to realize seismic resilience (Amer 2023). 

Moreover, the self-centering design concept is also extended to the timber/bamboo 

structural systems, including self-centering timber/bamboo frame structures (Di Cesare et 

al. 2018; Iqbal and Popovski 2017; Shu et al. 2019) and self-centering timber/bamboo 

shear walls, etc. (Chen et al. 2024; Fitzgerald et al. 2020; Sun, et al. 2020). The specific 

implementation methods are described as follows. 

 

Self-centering Frame Structures 
The ductile design of traditional frame structures with strong columns and weak 

beams utilizes the plastic deformation of structural components to dissipate seismic energy 

(Nie et al. 2020; Park 1986). This kind of design results in a severe post-earthquake loss 

(Paulay 1986; Wongpakdee and Leelataviwat 2017). Consequently, prestress has been 

employed to connect beam-column joints in frame structures, effectively addressing this 

issue. Palermo et al. (2005), based on Priestley’s theory (Priestley and Calvi 1991), which 

pioneered the low-damage design of reinforced concrete structures, proposed a multi-LVL 

seismic-resistant frame system using post-tensioned tendons connections called 

Prestressed-Laminated (Pres-lam) systems. This method adopted unbonded prestressed 

tendons to connect the structural components. Internal energy steel bars were adopted to 

dissipate energy, thus resulting in a special ‘flag-shaped’ self-centering dissipative 

hysteresis loop as shown in Fig. 8. 

Newcombe et al. (2008) proposed a novel seismic resisting system for multi-story 

timber buildings, integrating improved ductile steel connections based on the post-

tensioning method and rocking timber frames. The connections between beams and 

columns involved LVL, unbonded post-tensioned tendons, and energy dissipaters. Iqbal et 

al. (2016) conducted full-scale tests on Newcombe’s system, using both steel dissipaters 

and unbonded post-tensioning mild steel reinforcement. This hybrid system offered 

significantly higher energy dissipation compared with schemes relying solely on steel bars. 

Iqbal et al. (2018) also studied the mechanical behavior of post-tensioning connections 

with specific energy dampers, achieving near-zero residual deformation. Sarti et al. (2016) 
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proposed a CWC (column-wall-column) rocking column-shear wall hybrid system, where 

vertical prestressed steel bars were tensioned within the timber walls, and U-shaped steel 

plates served as additional overturning moment resistance and energy dissipaters. Wei and 

associates (Wei et al. 2024; Wu et al. 2014) conducted experiments on rigid timber wall 

panels equipped with slip-friction connectors, which imparted ductility and elastoplastic 

characteristics to brittle structures. 

 

 
Fig. 8. Palermo’s model (Palermo et al. 2005; CC0 1.0 Universal) 

  

Di Cersare et al. (2017, 2018, 2020) conducted dynamic tests on a three-story post-

tensioned timber frame structure equipped with an energy-dissipating brace system. The 

elastic seismic performance was enhanced by coupling the post-tensioned frame with the 

energy-dissipating braces. Smith et al. (2014, 2016) conducted experimental research on 

inclined steel plate post-tensioned GLT connections and observed strong self-centering and 

energy dissipation capability. Wanninger and Frangi (2014), Wanninger et al. (2015) and 

Granello et al. (2018, 2019) conducted a series of pushover tests on post-tensioned timber 

structural frames. The results showed that these connections presented low damage levels 

in tests. Li et al. (2020) compared the performance of hybrid post-tensioned GLT 

connections with tenon connections and concluded that post-tensioned timber connections 

exhibited smaller residual deformations. 

 

Self-centering Shear Walls 
Although traditional shear walls using nailed or bolted connections have been 

shown to have high strength and stiffness, their deformation capacity is limited in 

earthquakes (Aloisio et al. 2023a; Brown et al. 2022). The shear walls exhibited brittle 

characteristics in an earthquake, leading to stiffness degradation, substantial base shearing, 

severe connection damage, etc. (Li et al. 2018; Hasani and Ryan 2022). Consequently, 

scholars have investigated self-centering rocking or shear wall systems using post-

tensioned prestressed connections (Miliziano et al. 2020; Piri and Massumi 2022; Brown 

et al. 2023). This structure employed vertical prestressing tendons to pre-compress the 

walls to the foundation, supplemented with small energy-dissipating components such as 
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U-shaped flexural plates (UFP) or post-tensioned (PT) tendons (Sun et al. 2020; Wilson et 

al. 2020), as shown in Fig. 9. Under seismic actions, gap openings were present at the 

bottom of the walls, thus effectively controlling structural damage and reducing residual 

displacements (Aloisio et al. 2023c; Brown et al. 2023). In addition, the energy-dissipating 

components enhanced the energy dissipation capacity of the structure, further mitigating 

the seismic response (Cui et al. 2020; Piri and Massumi 2022). 

 
Fig. 9. UFP and PT 

 

Iqbal et al. (2015) proposed a new form of self-centering rocking wall coupled with 

PT tendons and UFPs as energy dissipation devices. UFP dissipaters exhibited stable 

energy dissipation characteristics and an ideal flag-shaped hysteresis behavior was 

achieved by combining UFPs with PT tendons. Ganey et al. (2017) described experiments 

conducted to develop a resilient wall system that combined cross-laminated timber (CLT) 

panels with vertical PT tendons to provide post-earthquake recovery. 

He and associates (Chen et al. 2021; He et al. 2022; Li et al. 2023) introduced a 

new type of self-centering steel-timber hybrid shear wall system (SC-STHSW), which 

employed post-tensioned tendons for the connection of frame beam-column joints, with 

slip friction dampers serving as connectors between the frame and the wall. Low-cycle 

quasi-static tests on this system revealed that the SC-STHSW system exhibited unique flag-

shaped hysteresis characteristics. The prestressed connection method effectively controlled 

residual deformations of the structure, and the additional friction dampers enhanced the 

energy dissipation capacity. Lu et al. (2022, 2024) proposed a self-centering CLB (cross-

laminated bamboo) rocking wall structural system using two kinds of friction dampers: 

traditional friction dampers and novel bending-friction coupled dampers (BFCD). The 

results obtained from quasi-static tests and finite element analyses indicated that the BFCD 

provided higher stiffness and energy dissipation capacity under a high drift ratio. 

Traditional frame structures and shear wall structures are two different structural 

forms. A lateral force-resisting system composed of beams and columns is used in frame 

structures to withstand seismic actions, while shear wall structures resist seismic actions 

through their own bending and shear stiffness. Compared to frame structures, shear wall 

systems are more suitable for high-rise buildings, with a maximum applicable height of up 

to 140 meters in seismic design. 

Based on traditional frame systems, self-centering timber frame structures 

originated from Palermo’s (2005) research on the low-damage prestressed laminated (Pres-
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Lam) system. Unbonded post-tensioned tendons connect the timber structural members, 

forming connections that resist seismic forces and dissipate energy, thereby overcoming 

the stiffness degradation and connection damage issues faced by traditional frames during 

earthquakes. Unlike the self-centering timber frame mechanism that uses press at beam-

column joints, the self-centering timber shear wall system uses vertical prestressing 

tendons to press the wall to the foundation, supplemented by small energy-dissipating 

components such as UFPs. This approach reduces residual displacement and enhances 

energy dissipation capacity. 

 

 

PRESTRESSED LARGE-SPAN TIMBER STRUCTURAL SYSTEMS 
 

In large-span structures, buckling is a crucial factor affecting the strength and 

stability of the structure as spacing increases (Fraternali and Motta 2023). Consequently, 

components of large-span structures should be designed to be axially loaded to ensure 

performance stability (Crocetti 2016; Dietsch and Winter 2018). Moreover, due to the large 

number of components in large-span structures, there are high demands on connection 

performance. Therefore, existing studies have applied prestress to large-span structures 

through the string approach. This structural system originated from the concept of 

tensioning the beam via chords through rods (Saitoh 1998; Saitoh and Okada 1999). The 

short rods were placed under the beam, applying prestress to the beam via cables, as shown 

in Fig. 10. The compressive force on the rods created a counter moment and reverse 

deflection in the upper chord structure, thus reducing the maximum moment and final 

deflection under external loads, and improving the structural stress distribution (Nie and Li 

2012). The string method was also applied in the timber/bamboo large-span structures. 

 

 
Fig. 10. Types of string structures 
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Plane String Structures 
The concept of plane string structure was first used in the 138.7-meter-long Royal 

Albert Double-Span Railway Bridge in 1859 (Norrie 1956), as shown in Fig. 11. Masao 

Saito defined the beam chord structure at the IASS Symposium as a self-balancing system 

composed of compressive and tensile components connected by vertical rods. Plane string 

timber/bamboo structures have also been investigated (Zhao et al. 2024). Current research 

has employed analytical methods, finite element analysis, and model testing to study the 

performance of plane timber/bamboo string structures, including the number of vertical 

rods, initial geometric defects, and material elastoplastic (Lee et al. 2023). 

 

 
 

Fig. 11. Royal Albert Double-span Railway Bridge 
(https://en.wikipedia.org/wiki/Royal_Albert_Bridge#cite_note-3) 

 

Zhang et al. (2014) conducted compressive tests on the glued string beams and 

concluded that increasing the arch-span ratio or sag-span ratio could enhance the load-

bearing capacity. Guo et al. (2019) employed experimental and numerical research to 

explore factors affecting the performance of string truss GLT beams, finding that the 

stronger the compressive performance increased with the number of prestressing steel 

wires and the magnitude of the prestress. String truss GLT beams exhibited a ductile failure 

mode. Bending tests were conducted by Sun et al. (2016) on plane string beams with 

additional prestressed steel strands on the lower chord. The results showed that the brittle 

failure mode in ordinary beams was transformed into a plastic failure mode, with their 

ultimate load-bearing capacity and stiffness inversely proportional to the span ratio. Zhao 

et al. (2023) conducted five-point bending tests on large-span glulam string beams. The 

results indicated that as the diameter increased, the failure region shifted from the lower 

steel cable to the upper composite beam. 

 

 
Fig. 12. Horinouchi Town Gymnasium in Japan 
(https://data.shinkenchiku.online/en/projects/articles/SK_1996_12_240-0) 
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Plane string structures are suitable for complex architectural forms, with broad 

application prospects. The Horiuchi Town Gymnasium in Japan (Saitoh 1998), with a 38 

m span, exemplified a timber plane string structure using composite truss beams, as 

exhibited in Fig. 12. Situated in a snowy region of Japan, the design considered a snow 

depth of up to 3.5 m. Ingeniously, diagonal rods and columns were added to the string 

beams; thus, the rigidity of the string components was increased during heavy snow-

loading conditions. 

 
Spatial String Structures 

Spatial string structures are formed from plane string configurations arranged in 

specific spatial layouts. Common types include bidirectional, multidirectional, and radial 

spatial string structures (Yifeng and Jian 2011). Due to the complex forces involved, 

modeling experiments on spatial string structures are challenging. Consequently, scholars 

often utilize numerical analysis methods for research (Cantcheff 2011). 

Rumlová and Fojtík (2015) used finite element analysis to study the strain changes 

at critical joints in spatial timber roof supports. Sejkot et al. (2020) examined the lateral 

stability of single and bidirectional timber string roof structures through numerical 

simulation and geometric nonlinear analysis. The results revealed that lateral torsional 

buckling of the top chords adversely affected the load-bearing capacity against out-of-plane 

buckling. Ching and Carstensen (2022) developed a topology optimization algorithm for 

steel-timber hybrid spatial string structures, aimed at reducing carbon emissions. 

The Izumo Dome in Japan, completed in 1992, was a typical application of timber 

spatial string structures, featuring a spatial arch string structure with a diameter of 140 m 

and height of 49 m (Tsubota et al. 1993). Composed of radial wooden arches and a lower 

cable system, the structure was covered with an external membrane, as illustrated in Fig. 

13. The dome was entirely assembled on the ground, elevated and heightened through a 

central temporary support structure, lifting the dome into place. 

 

  
 

Fig. 13. The Izumo Dome in Japan (https://en.wikipedia.org/wiki/Izumo_Dome) 

 

Plane string structures primarily extend within a two-dimensional plane and are 

commonly found in roofs and bridges, including forms such as beam string structures, arch 

string structures, and cable-arch string structures. Spatial string structures are composed of 

plane string structures arranged in specific spatial configurations, including bidirectional 

string structures, multidirectional string structures, and radial string structures, which are 

more suitable for large-span structural roofs. Research on modern timber/bamboo string 

structures is still relatively limited, requiring further study on their load-bearing 

mechanisms and seismic performance to promote their engineering applications. 
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BIBLIOMETRIC ANALYSIS ON PRESTRESSED TIMBER/BAMBOO 
STRUCTURES 
 

Recent research hotspots were identified in this work through statistical analysis. 

Knowledge maps depicted innovative developments and forecasted future directions 

(Börner et al. 2003). The primary research corpus was sourced from the Web of Science 

database, with data mining facilitated by CiteSpace. Keyword trend analysis, as shown in 

Fig. 15, elucidated development hotspots, revealing a shift in research focus towards 

structural seismic resilience over the past two decades. Efforts have concentrated on 

understanding the mechanical behavior and performance characteristics of individual 

components, laying theoretical foundations for practical engineering applications.  

 

 
Fig. 14. Keywords analysis 
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However, translating research findings into practical engineering applications 

remains limited with unresolved issues: 

 

(1) Efficient timber/bamboo component reinforcement schemes 

Currently, combining steel and FRP can mitigate the shortcomings of 

timber/bamboo materials. Steel is prone to corrosion and is heavy, while timber/bamboo 

materials are hygroscopic. Timber/bamboo beams reinforced by FRP may face problems 

including reduced bonding or delamination, aging, humidity, temperature fluctuations, etc. 

Consequently, the development and research in novel strong, lightweight, durable, and 

economical materials for reinforcing timber/bamboo components and structures are needed. 

 

(2) Evaluation and control of prestress loss 

Timber/bamboo structures are sensitive to environmental humidity and temperature 

changes. Creep can easily cause prestress loss, affecting long-term performance and 

threatening durability. Research on prestress loss could help predict and control the 

effectiveness of prestress more accurately in practical design. Currently, there is no unified 

standard for calculating prestress loss in prestressed timber/bamboo components and 

connections. Therefore, further research is needed on the long-term performance 

considering prestress loss. 

 

(3) Novel prestressed timber/bamboo structural systems  

Currently, there is no widely applied form of prestressed timber/bamboo structures. 

Prefabrication of timber/bamboo structures is a key focus of future research in structural 

engineering. By reasonably combining prestressed components or additional parts, 

modular units can be achieved, promoting prefabricated design and production. There is an 

urgent need for novel structures that can be rapidly assembled and possess stable seismic 

performance. This will effectively ensure construction safety in earthquake areas and 

reduce the damage caused by seismic disasters. 

 

 

CONCLUDING REMARKS 
 

Since the 1950s, extensive research has been conducted by scholars on prestressed 

timber/bamboo structures, initially focusing on the mechanical performance of individual 

components post-tensioning, gradually shifting to the overall structural performance. This 

paper has provided an overview of the historical development and latest advancements in 

prestressed timber/bamboo structures from the component, connection, and structural 

levels, as shown in Fig. 15. This study utilized bibliometric analysis to summarize existing 

research, identifying the issues remaining to be addressed and future development 

directions in the field of prestressed timber/bamboo structures. The main research 

conclusions are as follows: 

(1) To address the shortcomings of low stiffness and susceptibility to deformation 

in timber/bamboo flexure components, external load pre-cambering and additional 

prestressed components are used to reinforce timber/bamboo flexural components. The 

results indicate that when retrofitted with prestress, timber/bamboo flexural components 

present improved ultimate bearing capacity, ductility, and stiffness. Meanwhile, prestress 

loss in prestressed reinforced bending components is inevitable. Further research on the 
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long-term performance of prestressed timber/bamboo structures considering prestress loss 

is necessary. 

(2) Prestress in timber/bamboo columns often appears in the form of lateral 

confinement. Thin-walled steel tubes are commonly used to constrain the timber columns. 

Circumferential prestress is applied to the thin-walled steel through bolt-tightening force, 

placing the core timber column in a triaxial compression state when subjected to external 

loads. Prestressed steel-timber composite columns can enhance the ultimate compressive 

bearing capacity of the columns, improving ductility and energy dissipation characteristics. 

(3) Self-centering lateral resistance timber/bamboo structures can enhance seismic 

performance through prestress technology. Self-centering timber/bamboo frames and shear 

wall systems have continuously developed over the past two decades. The combination of 

prestressed connections and additional energy-dissipating components can effectively 

control seismic damage, achieving excellent flag-shaped hysteretic performance. However, 

such structures have not yet been widely applied. The actual seismic response and anti-

collapse performance need further investigation. 

(4) Existing research applies prestress to timber/bamboo large-span structural 

systems through the string method, changing their failure mode to ductile failure. 

Timber/bamboo string structures are favored for their elegant and smooth configuration 

and spatial sense, with practical applications such as the Izumo Dome in Japan. To promote 

the development of such structures, further research is needed from the perspectives of 

numerical simulation, theoretical study, and model testing, especially considering the long-

term performance of structures with varying prestress. 
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Fig. 15. Overview of the history and recent advances in timber/bamboo structures 

 

Despite significant progress in various prestressed timber/bamboo structures, 

practical engineering applications remain limited. In addition to technical considerations, 

the economic implementation of prestressing technology requires comprehensive life-cycle 

cost assessments. Additionally, it is necessary to translate research achievements and 

existing engineering experience into design codes and standards. Advances in materials 

science, structural testing, and computational technology will further promote the 

development of prestressed timber/bamboo systems, contributing to greener and more 

sustainable urban construction. 
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LIST OF SYMBOLS 

 

Symbols  

P prestressing force 

w weight constant 

u fluid displacement 

t,τ time from prestressing 

N amping constant 

k spring stiffness 

σ stress 

r relaxation coefficient 

E young’s modulus 

ε total strain 

εin environmental (thermal and moisture) strain 

d thickness 

γ shear strain 

l length 

G shear modulus 

h height 

day number of the day from the beginning of prestress 

A section area 

δ initial eccentricity 

ΔT temperature range between environment and anchored rebars  

α coefficient of temperature expansion 

F ultimate strength 
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Subscripts  

0 refers to initial value at t=0 

r refers to reservoir in dashpot reservoir element of relaxation model 

s refers to stressing system in relaxation model 

n refers to wood element in relaxation model 

p refers to prestressing steel 

L refers to loaded beam 

UL refers to unloaded beam 

f refers to FRP 

a refers to the adhesive layer 

w refers to wood 

e refers to elastic area 

g refers to cushion blocks under beams 
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