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Mixtures of vegetable waste and leaves were used to prepare compost in 
piles. The carbon/nitrogen ratios of the biomass varied among the selected 
agricultural waste. Co-composting was carried out for six weeks with a 
starter culture. The organic matter of the leaves declined after four weeks 
of composting, and a stable compost was obtained after 42 days of 
composting. The compost temperature reached its maximum after 12 days 
and moisture content declined continuously up to 42 days. The pH value 
of the compost increased slowly during composting and reached a 
maximum after six weeks. The electrical conductivity of the compost was 
suitable for plant nutrition. The organic matter, as organic carbon, 
declined, and organic nitrogen was increased. The carbon/nitrogen ratio 
of the mature compost was decreased. The decreased levels of 
carbon/nitrogen ratio reflected the maturity of the compost. The organic 
matter (%) was maximum (>50%) before composting process and it 
decreased gradually. The seed germination index was higher after 42 days 
of composting. The compost-treated plant improved yield and green gram 
seeds showed the presence of antioxidant enzymes. 
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INTRODUCTION 
 

Fermentation of foods with probiotic Lactobacillus plantarum has attracted 

increasing interest in recent years. Bacteria can improve the availability of nutrients and 

improve the health benefits of fermented food derived from organic amendments. 

Composting is a useful method to convert organic matter into useful products (Azim et al. 

2018). The presence of inappropriate nutrient compositions in the selected biomass, 

moisture content, carbon, and nitrogen sources, pretreatment, and composition of wastes 

influence composting (Chen 2016; Arokiyaraj et al. 2024). The increased urbanization, 

human population, and economic growth influence the steep increase in organic waste 

(Gouveia and Prado 2010). Composting with more than one substrate allows for an 

optimum carbon-nitrogen ratio in the compost mixture. Hence, kitchen waste and wasted 

food items are mixed with leaves to improve the nutrients of the compost. The details of 

the composting operation may be adjusted in terms of duration, structural characteristics, 

chemical properties, and leachate formation (Reyes-Torres et al. 2018). Biomass, such as 

wheat straw, wood chip, agro-residues, and rice husk, are used as an effective substrate in 

compost (Adhikari et al. 2008). The nutrient status of the compost is based on the nutrient 
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composition of the biomass. The variation of available organic nutrients in the bulking 

agent can depend on the organic waste, season, and country of origin (Bandara et al. 2007).  

Analysis of composting material, including physicochemical properties, 

microbiological populations, and soil microbial activity, is useful to predict compost 

maturity. Microbial communities degrade organic matter and improve soil nutrients and 

availability. The mature compost consists of a cell wall of dead microorganisms and easily 

utilizable compounds; a cell wall of bacteria, including sugar molecules; and several 

intermediate compounds. The developing intermediate compounds are called humic acids. 

The available humic acids improve soil ecology, soil fertility, soil structure, and plant 

growth-promoting agents. The humic acid level in the composting affects the maturity of 

the bulking agents. The maturity of the compost has been evaluated by analytical methods 

and microbiological observation (Huang et al. 2006). The bulking agents, such as green 

waste, municipal solid waste, cattle manure, and sewage sludge, can be characterized by 

analytical and microbiological methods (Al-Dhabi et al. 2019). In the composting process, 

maturity is affected by various factors, including time, pH, particle size, porosity, moisture 

content, carbon and nitrogen ratio, temperature, water content, and oxygen level (Li et al. 

2013; Sathya et al. 2024). Determination of bulk density, temperature, porosity, nutrient 

content, moisture, and oxygen supply are important criteria to monitor compost (Iqbal et 

al. 2015). The microbial population in the bulking agent, organic matters, and 

environmental factors regulate composting (Hueso et al. 2012). The main objective of this 

study was to analyze the co-composting of agricultural residues and food waste. The 

matured compost was applied to improve the growth of the green gram plant. The green 

gram seed was harvested and antioxidant potential was analyzed and used for the 

preparation of probiotic food by Lactobacillus plantarum.  

 

 

EXPERIMENTAL 
 

Feedstock 
Agricultural residues (AR) and food waste (FW) were collected and used for 

composting. The food waste was composed of raw and cooked vegetables, including the 

remnants of brinjal, carrot, beetroot, cabbage, lady finger, onion, coconut husk, cucumber, 

and potato. (Chen 2016). The agro-residues were composed of neem tree leaves, lemon 

tree leaves, and cucumber leaves. The green leaves were cut into small pieces and stored 

for further use. To improve composting, mature compost was used as a starter. The starter 

culture was prepared in the laboratory. Vegetable waste and leaves mixture (100 g each) 

were mixed at 1:1 ratio in an Erlenmeyer flask. Co-composting was performed for 60 days 

without any prior sterilization. The co-composting conditions were: pH6.41, 74.3% 

moisture content, incubation time-two months and 30±1 °C incubation temperature. This 

allowed for the growth of indigenous microbial communities. The sample was withdrawn 

every 10 days, and the germination index was analyzed. The compost with >80% 

germination index was considered for mature compost (Zhang et al. 2018). During the 

composting process, 20% mature compost was used as an effective inoculum concentration 

(Yeh et al. 2020). 

 

Composting 
 A mixture of AR and FW at a 1:1 ratio was used for compost preparation. The 

initial moisture content was 67%, the organic matter concentration was 58%, and the 
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carbon/nitrogen (C/N) ratio was 29.5. A pile was constructed (0.5 m high, 1.5 m wide, and 

2.5 m long), and the composting process was initiated after the inoculation of starter 

material. The maturity of the compost was determined after 42 days of the composting 

process (Day and Shaw 2001). 

 

Analytical Methods 
The moisture content of the compost was determined by drying the sample at 105 

°C for 6 h. The sample (500 g) was mixed with 5 L of double-distilled water. It was filtered 

and used for pH and electrical conductivity (EC) determinations. The mineral content of 

the sample was determined by the photometric method. Total Kjeldahl nitrogen, organic 

content, total phosphorus, and total organic carbon were determined as described earlier 

(Zucconi et al. 1985; Thompson et al. 2002). 

 

Seed Germination Analysis 
The filtered compost (10 mL) was added to a Petri dish, and filter paper was placed 

on it. Then, 50 green gram seeds (n = 50) (Vigna radiata)were placed on the wet filter 

paper and incubated for 72 h at 28 ± 1 °C. Tap water was considered a control sample. The 

germination index was calculated using the following formula: 

𝐺𝐼(%) =
Seed germination×root length of treatment×100

Seed germination×root length of control
   (1) 

 

Determination of Soil Microbial Activities  
Green gram seeds (n = 10) were surface sterilized with a sodium hypochlorite 

solution (2.5%) for 3 min. An earthen pot was used for this experiment, and each pot was 

filled with 2 kg of sterilized soil. The seeds were sown in a pot and maintained for two 

weeks. After two weeks, compost at various stages (7 to 42 days) was added. It was 

maintained for 90 days, and plant growth and antioxidant activities were determined. 

 
Determination of Soil Enzyme Activities 
 The earthen pot soil (2 g) was treated with 0.5 mL of toluene. An enzyme reaction 

was performed at the optimum pH value (pH 6.8), and acid phosphatase activity was 

determined. Alkaline phosphatase activity was determined by adding 0.5 mL of p-

nitrophenyl phosphate solution (0.025 M) to the filtered sample and incubating for 60 min 

at 37 °C. In this reaction mixture, 0.5 M CaCl2 was added in an alkaline condition and 

incubated for 15 min. The sample was filtered, centrifuged at 5000 rpm for 10 min, and the 

absorbance was read at 410 nm. To determine soil dehydrogenase activity, the soil sample 

was mixed with a CaCO3 solution. To the preweighed soil (10 g), 0.2 mL of 2,3,5-

triphenyltetrazolium solution and 10 mL of deionized water were added. The mixture was 

incubated at 32 °C, and methanol (10 mL) was added. The material was filtered, and the 

absorbance of the filtrate was read at 485 nm. 
 
Antioxidant Enzymes 

The antioxidant properties of seeds were determined. Briefly, the harvested seeds 

(5 g) were ground with buffer (phosphate buffer, pH 7.2, 0.1 M) and centrifuged at 10,000 

rpm for 5 min. To the sample (0.5 mL), 1% (v/v) guaiacol was added and mixed. After 5 

min, 0.2 mL of hydrogen peroxide was added, and the absorbance of the sample was read 

at 470 nm. The amount of seed phenylalanine ammonia lyase activity was determined by 

the spectrophotometer method. To determine polyphenol oxidase activity, the sample was 
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mixed with proline. To this reaction mixture, catechol was added. The sample was read at 

546 nm against a blank (Malar et al. 2020).  

 

Preparation of Fermented Green Gram Milk 
Probiotic culture  

The Lactobacillus plantarum (MTCC 1325) strain was used for the fermentation of 

green gram. Bacterial culture was inoculated in deManRogosa Sharpe (MRS) broth 

medium, incubated for 18 h, and used for fermentation. 

 

Preparation of fermented green gram milk and fermentation   

A green gram (5 g) was harvested from the plant cultured in the greenhouse. It was 

cleaned, rinsed with tap water, and soaked for 10 h. The green gram was drained and 

homogenized with sterile water. The mixture was filtered using a muslin cloth. It was 

placed for 2 h at 4 °C, and the raw green gram milk was obtained. About 20 mL of milk 

was autoclaved, cooled, and inoculated with L. plantarum (1 × 107 CFU/mL). To this 

Erlenmeyer flask, sucrose (2%) was added to improve L. plantarum growth. The culture 

was incubated for 28 h, and uninoculated milk was used as a control. The final pH of the 

fermented medium, total viable L. plantarum, phenolic content, and antioxidant activity 

were determined. 

 

pH and Viable Cell Counts 
 The pH of the fermented milk was determined using a digital pH meter. Viable 

LAB cells from the fermented medium were carried out using MRS agar plates as described 

previously. Briefly, the fermented milk was diluted appropriately and spread on the MRS 

agar medium. It was incubated for 28 h at 37 °C, and the viable cells were counted. The 

final results were expressed as log10 CFU/mL. 

 

Polyphenol and Antioxidant Activity 
 The total polyphenol content of the milk was determined by the Folin-Ciocalteu 

method, as suggested earlier. Total phenolic content was expressed as milligrams of gallic 

acid equivalent (mg GAE) per 100 mL of fermented milk. The DPPH free radical 

scavenging activity (mmol Trolox/100 mL), ABTS activity (mmol Trolox/100 mL), and 

ferric-reducing antioxidant power (mmol Fe (II)/100 mL) were performed as described 

previously (Al-Dhabi et al. 2019, 2020).  

 

 
RESULTS AND DISCUSSION  
 

Analysis of Agricultural Residues and Food Waste  
The agricultural residues and food waste were subjected to physical factor and 

nutrient value analyses. The amount of moisture (56.2 ± 1.1%) and pH (6.1 ± 0.02) revealed 

the suitability of this mixture for composting. The total carbon content of the leaf sample 

was 45.3 ± 0.9%, and an increased level (47.3 ± 0.1%) was observed in the raw food waste. 

Total Kjeldahl nitrogen content was also higher in the food waste (2.62 ± 0.2%) than that 

in leaves (0.51 ± 0.1%). The C/N content of mixed organic waste was 32.2 ± 0.4% and was 

judged to be suitable for composting (Table 1).  
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Table 1. Physical and Nutrient Components of Agricultural Residues and Food 
Waste 

Analysis Agri-residues Food waste Mixture 

Moisture (%) 57.2±0.1 54.1±0.2 56.2±1.1 

pH 6.1±0.02 6.2±0.01 6.1 ± 0.4 

Total carbon (%) 45.3±0.9 47.3±0.1 45.1±0.4 

Kjeldahl Nitrogen (%) 0.51±0.1 2.62±0.2 1.4±0.2 

C/N ratio (%) 88.8±0.2 18.0±0.1 32.2±0.4 

 
Influence of Temperature and Moisture Content 
 The compost temperature reached its maximum after 12 days (71.2 ± 0.3 °C) (Fig. 

1a).  

 

A 

 
B 

 

 
 

Fig. 1. Co-composting of vegetable waste leaves in a pile for 42 days: The pile temperature (A); 
and moisture content (B)  
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 The compost temperature influenced the microbial community, and the variation 

affected the microbial population (Azim et al. 2018). The microbial population varied in 

mesophilic, thermophilic, and cooling phases (Franke-Whittle et al. 2014). The increased 

temperature in the pile effectively removed bacterial pathogens from the compost. The 

microbial activity in the compost influenced the temperature of the pile. The pile 

temperature can be used to analyze the compost stability (Liu et al. 2011). Figure 1b shows 

the variation of moisture content in the pile over 42 days. On day 1, the moisture content 

was 53.3 ± 1.2%, and it declined continuously (Fig. 1b). The changes in moisture content 

in the compost were attributed to microbial activity and the evaporation of water. The 

moisture content was 38.2 ± 0.17% after 42 days. The selected vegetable wastes and leaves 

adequately supported the growth of bacterial populations and improved soil microbial 

activity. The physico-chemical properties of biomass provide a broad surface area, and the 

improved temperature leads to evaporation (Zhang et al. 2016). 

 
Variation of pH and Electrical Conductivity 
 The pH of the compost varied during the study period, and the result is depicted in 

Fig. 2a.  

A 

 
 

B 

 
 

Fig. 2. Variations of pH (A); and EC (B) during composting process in the pile 
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 Based on input from Bustamante et al. (2008), the pH value between 6 and 8 was 

judged to be suitable for the composting process. After three weeks of composting, the pH 

value was 6.72 ± 0.1, and it increased to 6.95 ± 0.2 after six weeks. The pH of the compost 

varied based on the microbial activity, organic acid production, and type of biomass 

(Awasthi et al. 2014). The EC was 2.4 ± 0.1 mS/cm before starting the composting process, 

and it reached 2.5 ± 0.21 mS/cm after 42 days. A stable EC value was achieved after 35 

days of composting (Fig. 2b). This finding revealed that the selected biomasses are easily 

degradable, and the present finding was corroborated by a previous study (Hosseini and 

Aziz 2013). The EC value of the mature compost was <3 mS/cm, indicating suitability for 

plant growth. The EC value of <3.0 mS/cm is preferred for plants (Gao et al. 2010).  
 

Analysis of Organic Matter  
The organic matter content was 51.2 ± 1.1% before the composting process, and it 

decreased gradually. The organic matter content was 29.7 ± 1.1% after 42 days of treatment 

(Fig. 3). Analysis of organic matter is useful to determine the rate of microbial composting 

(Zhao et al. 2016). Microorganisms in compost degrade organic matter, and the decreased 

pH value in the compost affects microbial activity (Tran et al. 2015). Microorganisms used 

can easily degrade matter rapidly (starting phase), and microbial enzymes, especially lignin 

peroxidase and cellulases, reduced organic matter in the compost (Xi et al. 2012).  

 

 
 

Fig. 3.Organic matter (%) of the compost in a pile for six weeks 
 

Carbon and Nitrogen Content of the Compost 
 The organic carbon content was 27.2 ± 0.7% before the composting process, and it 

declined continuously. After 42 days of composting, it reached 5.5 ± 0.58% (Fig. 4a). 

Karatas et al. (2014) reported the loss of organic carbon in the compost, and its content 

directly reflects compost maturity. The organic nitrogen of the biomass was 0.93 ± 0.09%, 

and it continuously increased. The organic nitrogen reached its maximum (1.49 ± 0.08%) 

after 42 days of composting (Fig. 4b). The increase in Kjeldahl nitrogen during composting 

was previously reported by Seng et al. (2013). The nitrogen and carbon ratios of the 

compost varied based on the available carbon and nitrogen levels. Figure 4c reveals the 

C/N ratio, and after 42 days of composting, the ratio was 13.8 ± 0.01. The rapid microbial 
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decomposition of organic matter results in a decrease in the C/N ratio (Awasthi et al. 2018). 

The decreased level of the C/N ratio reflected the maturity of the compost. 

 

A 
 

 
 

B 
 

 
 

C 
 

 
 

Fig. 4. Carbon and nitrogen content of the compost for 42 days: (A) organic carbon, (b) total 
Kjeldahl nitrogen, and (C) C/N ratio 
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Mature Compost and Seed Germination Index 
 The seed germination index is widely used to analyze the maturity of the compost. 

The seed germination index was 24.5 ± 1.1% in the seeds treated with zero days of mature 

compost. The seed germination index increased to 50.2 ± 1.1% in the seeds treated with 21 

days of mature compost. This result was similar to previous findings. Awasthi et al. (2018) 

reported that the toxic substances in the compost affected the seed germination index of 

plants.  

 The seed germination index was 80.4 ± 1.2% in the 35 days of compost, and the 

seed germination index increased after 42 days of compost (Fig. 5). The toxic effect of the 

compost material varied based on the substrate used for composting. The maximum seed 

germination index was achieved after 84 days (Rashad et al. 2020).  

 

 
 

Fig. 5. Analysis of seed germination index using compost. The compost was collected from 0 to 
42 days and was used for analysis.  
 

Microbial Activities in the Greenhouse Pot Soil 
 The compost was used as soil amendment, and the effect on improving microbial 

activities in the pot was analyzed. In the control pot, soil enzyme activity was less than in 

the experimental pot. Acid phosphatase (187 ± 1.8 µg p-nitrophenyl/g/h) and alkaline 

phosphatase (319 ± 40.1 µg p-nitrophenyl/g/h) activity were increased in the pot treated 

with mature compost.  

 The soil dehydrogenase activity was directly proportional to the soil bacterial 

activity. The compost improved soil dehydrogenase activity (Figs. 6A and B). Soil 

microbial enzymes contribute to organic residue decomposition, nutrient cycling, and geo-

chemical cycles. Soil microorganisms, especially bacteria play a major role in ecological 

processes such as the formation of soil aggregates, and nutrient cycling through the 

decomposition of organic matter. The microbial communities contributed to nitrification, 

de-nitrification and nitrogen fixation. Organic amendments can effectively improve the soil 

microbial population.  

 Changes in microbial composition and activity can influence plant growth by 

improving nutrient turnover and mitigating disease incidence (Balasubramanian et al. 

2021). The supplemented compost improved the soil environment and soil microbial 

activity (Baazeem et al. 2021; Vijayaraghavan et al. 2021). 
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A 

 
 

B 

 
 

Fig. 6. Soil microbial activity of compost in the earthen pot at various stages after planting green 
gram: Soil alkaline and acid phosphatase (A); and dehydrogenase activity (B) in the pot soil 
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also validates the positive impact of organic compost on green gram quality in terms of 

antioxidant defense enzymes.  

0

50

100

150

200

250

300

350

7 days 14 days 21 days 28 days 35days 42 days

µ
g

 p
-n

it
ro

p
h

e
n

y
l/
g

/h

Acid phosphatase Alkaline phosphatase

0

5

10

15

20

25

30

35

7 days 14 days 21 days 28 days 35days 42 days

µ
g

 T
P

F
/g

 s
o

il
 /
 h



 

PEER-REVIEWED ARTICLE bioresources.cnr.ncsu.edu 

 

 

Rejiniemon et al. (2024). “Food & leaves compost,” BioResources 19(4), 8827-8843.  8837 

Table 2. Effect of Compost Manure on the Improvement of Antioxidant Enzymes 
in Green Gram Seeds 

Treatment  
  

POD (U/g seed) PAL (U/h/g seed) PO (U/g seed) 

   

T01 49.8  ± 0.9 14  ±  2.5 37.8 ± 0.32 

T02 53.8  ±  2.2 20.5  ±  0.7 45.2  ±  0.4 

T03 59.4  ±  0.8 24.9  ±  0.1 64.93  ±  1.1 

T04 60.8  ±  0.9 31.5  ±  2.2 68.2  ±  0.2 

T05 74.2  ±  0.3 70.5  ±  0.4 65.9  ±  2.2 

T06 75.5 ± 0.08 70.9  ±  0.5 60.3  ±  1.2 

Control 74.9  ± 0.15 65.5  ± 1.1 58.1  ±  0.9 

POD-Peroxidase; PAL- Phenylalanine Ammonia Lyase; PO-Polyphenol Oxidase. Compost was 
supplemented to green gram plant in a greenhouse and the seeds were harvested, and assayed 
for antioxidant activity.  
 

Assessment of pH in Fermented Green Gram Milk from Green-House   
The pH of the green gram milk medium is described in Fig. 7.  

A 

 
B 

 
 

Fig. 7. Variation of viable pH (A); and viable count of Lactobacillus cells (B) from the fermented 
green gram milk 
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The pH value was found to be 6.82 ± 0.3 at 0 h of fermentation and it decreased 

drastically after 8 h (5.01 ± 0.3). The growth of L. plantarum reached its maximum after 8 

h of fermentation, and the pH dropped at this time. The decreased rate of pH value was 

high within 8 h, and this rate slowly declined thereafter. The decrease in pH value during 

the fermentation process could be due to the production of various organic acids by L. 

plantarum. 
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Fig. 8. Antioxidant activity (A); and polyphenol content (B) of fermented green gram milk with L. 
plantarum for 28 h 
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The viable cells increased and reached maximum within 8 h of incubation in green 

gram milk and gradually declined, which was almost similar to the results achieved with 

L. plantarum B1-6, which reported maximum growth within 10 h (Xiao et al. 2015). The 

poor viability of cells after 12 h of fermentation was attributed mainly to the extreme acidic 

environment. Most of the Lactobacillus species released a number of organic acids during 

the fermentation process, and the released organic acids reduced the pH. The acidic 

environment prevents the growth of other microorganisms. 
 

Polyphenol Content Improved Antioxidant Activity of Fermented Green 
Gram Milk 
 The ABTS, DPPH, and FRAP reducing powers of fermented milk were analyzed, 

and the results are described in Fig. 8A. The ABTS activity was increased after 8 h of 

incubation in green gram milk, and it gradually decreased from 8 h to 12 h. The kinetics of 

DPPH activity was different from ABTS activity. The DPPH activity increased after 12 h 

and declined from 12 h to 28 h gradually. The observed DPPH value in this study was 

comparatively high compared to ABTS results and FRAP-reducing power. Zhao and Shah 

(2014) reported increased DPPH free radical scavenging activity in fermented food. The 

increased antioxidant activity in the fermented milk could be associated with increased 

antioxidant vitamins. The FRAP activity assay has been widely used to determine 

antioxidant properties in liquid samples. Fermentation with L. plantarum improved FRAP 

activity, and the result is described in Fig. 8A. Compared with 0 h fermentation with either 

8 h or 12 h fermentation, FRAP activity increased significantly. The polyphenol content 

level was improved after fermentation with L. plantarum. Total polyphenol content was 

8.3 ± 0.42 mg GAE/100 mL in the raw milk, and after fermentation, the amount of 

polyphenol content increased (Fig. 8B). Earlier reports stated that fermentation with 

Lactobacillus species could significantly increase total phenolic content (Xiao et al. 2015), 

and the improved polyphenol in the fermented medium attributed to high antioxidant 

activity (Awasthi et al. 2022). 

 

 
CONCLUSIONS 
 

1. Co-compost was prepared using vegetable waste and leaves. Co-compost improved 

microbial activities in the greenhouse experiments. 

2. The co-compost improved peroxidase, polyphenol oxidase, and phenylalanine 

ammonia lyase activities. 

3. The high polyphenol content in the fermented green gram milk is correlated with the 

high antioxidant capacity of the green gram milk fermented by L. plantarum. 

4. Total viable count, pH, polyphenol content, and antioxidant activity in fermented 

green gram milk with L. plantarum showed improved health benefits. 
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